【題目】在銳角中,,
(Ⅰ)求角A的大小;
(Ⅱ)當(dāng)BC=2時(shí),求面積的最大值.
【答案】(I)(II).
【解析】
(I)由正弦定理化簡(jiǎn)已知等式,可得,結(jié)合△ABC是銳角三角形,可得;
(II)由余弦定理a2=b2+c2-2bccosA的式子,代入題中數(shù)據(jù)化簡(jiǎn)得到b2+c2=bc+4,再根據(jù)基本不等式加以計(jì)算得到bc≤4,利用三角形的面積公式即可得到當(dāng)b=c=2時(shí),△ABC面積S有最大值為.
(Ⅰ)∵,
∴由正弦定理,得,
又∵B為三角形的內(nèi)角,得sinB>0,
∴,可得,
∵△ABC是銳角三角形,
∴;
(Ⅱ)設(shè)角A、B、C所對(duì)的邊分別為a、b、c.
由題意a=2,根據(jù)余弦定理,
可得,
化簡(jiǎn)得,
∵,
∴bc+4≥2bc,解得bc≤4,
∵△ABC面積,
∴當(dāng)且僅當(dāng)b=c=2時(shí),△ABC面積S達(dá)到最大值,
面積的最大值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若無(wú)窮數(shù)列滿足:只要,必有,則稱具有性質(zhì).
(1)若具有性質(zhì),且, ,求;
(2)若無(wú)窮數(shù)列是等差數(shù)列,無(wú)窮數(shù)列是公比為正數(shù)的等比數(shù)列, , , 判斷是否具有性質(zhì),并說(shuō)明理由;
(3)設(shè)是無(wú)窮數(shù)列,已知.求證:“對(duì)任意都具有性質(zhì)”的充要條件為“是常數(shù)列”.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的一個(gè)頂點(diǎn)和兩個(gè)焦點(diǎn)構(gòu)成的三角形的面積為4.
(1)求橢圓的方程;
(2)已知直線與橢圓交于、兩點(diǎn),試問(wèn),是否存在軸上的點(diǎn),使得對(duì)任意的,為定值,若存在,求出點(diǎn)的坐標(biāo),若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某手機(jī)企業(yè)為確定下一年度投入某種產(chǎn)品的研發(fā)費(fèi)用,統(tǒng)計(jì)了近年投入的年研發(fā)費(fèi)用千萬(wàn)元與年銷售量千萬(wàn)件的數(shù)據(jù),得到散點(diǎn)圖1,對(duì)數(shù)據(jù)作出如下處理:令,,得到相關(guān)統(tǒng)計(jì)量的值如圖2:
(1)利用散點(diǎn)圖判斷和哪一個(gè)更適合作為年研發(fā)費(fèi)用和年銷售量的回歸類型(不必說(shuō)明理由),并根據(jù)數(shù)據(jù),求出與的回歸方程;
(2)已知企業(yè)年利潤(rùn)千萬(wàn)元與的關(guān)系式為(其中為自然對(duì)數(shù)的底數(shù)),根據(jù)(1)的結(jié)果,要使得該企業(yè)下一年的年利潤(rùn)最大,預(yù)計(jì)下一年應(yīng)投入多少研發(fā)費(fèi)用?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知梯形中,,,,四邊形為矩形,,平面平面.
(Ⅰ)求證:平面;
(Ⅱ)求平面與平面所成銳二面角的余弦值;
(Ⅲ)在線段上是否存在點(diǎn),使得直線與平面所成角的正弦值為,若存在,求出線段的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱錐中,SA=SB=AB=BC=CA=6,且側(cè)面ASB⊥底面ABC,則三棱錐S-ABC外接球的表面積為( )
A. 60π B. 56π C. 52π D. 48π
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線的焦點(diǎn)為,準(zhǔn)線與軸交于點(diǎn),點(diǎn)在拋物線上,直線與拋物線交于另一點(diǎn).
(1)設(shè)直線,的斜率分別為,,求證:常數(shù);
(2)①設(shè)的內(nèi)切圓圓心為的半徑為,試用表示點(diǎn)的橫坐標(biāo);
②當(dāng)的內(nèi)切圓的面積為時(shí),求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某種設(shè)備隨著使用年限的增加,每年的維護(hù)費(fèi)相應(yīng)增加現(xiàn)對(duì)一批該設(shè)備進(jìn)行調(diào)查,得到這批設(shè)備自購(gòu)入使用之日起,前5年平均每臺(tái)設(shè)備每年的維護(hù)費(fèi)用大致如下表:
年份(年) | 1 | 2 | 3 | 4 | 5 |
維護(hù)費(fèi)(萬(wàn)元) | 1.1 | 1.6 | 2 | 2.5 | 2.8 |
(1)在這5年中隨機(jī)抽取兩年,求平均每臺(tái)設(shè)備每年的維護(hù)費(fèi)用至少有1年多于2萬(wàn)元的概率;
(2)求關(guān)于的線性回歸方程.若該設(shè)備的價(jià)格是每臺(tái)16萬(wàn)元,你認(rèn)為應(yīng)該使用滿五年換一次設(shè)備,還是應(yīng)該使用滿八年換一次設(shè)備?請(qǐng)說(shuō)明理由.
參考公式:用最小二乘法求線性回歸方程的系數(shù)公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)(為自然對(duì)數(shù)的底數(shù))
(1)若曲線在點(diǎn)處的切線平行于軸,求的值;
(2)求函數(shù)的極值;
(3)當(dāng)時(shí),若直線與曲線沒(méi)有公共點(diǎn),求的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com