20.函數(shù)g(x)=tan($\frac{π}{3}$x-$\frac{π}{6}$)的最小正周期為M,則f(x)=Msin(2x-$\frac{π}{6}$)在區(qū)間[0,$\frac{π}{2}$]上的值域為[-$\frac{3}{2}$,3],.

分析 利用正切函數(shù)的周期性求得M,再利用正弦函數(shù)的定義域和值域,求得f(x)=Msin(2x-$\frac{π}{6}$)在區(qū)間[0,$\frac{π}{2}$]上的值域.

解答 解:函數(shù)g(x)=tan($\frac{π}{3}$x-$\frac{π}{6}$)的最小正周期為M=$\frac{π}{\frac{π}{3}}$=3,
當x∈[0,$\frac{π}{2}$],2x-$\frac{π}{6}$∈[-$\frac{π}{6}$,$\frac{5π}{6}$],sin(2x-$\frac{π}{6}$)∈[-$\frac{1}{2}$,1],∴Msin(2x-$\frac{π}{6}$)=3sin(2x-$\frac{π}{6}$)∈[-$\frac{3}{2}$,3],
∴f(x)=Msin(2x-$\frac{π}{6}$)在區(qū)間[0,$\frac{π}{2}$]上的值域為[-$\frac{3}{2}$,3],
故答案為:[-$\frac{3}{2}$,3].

點評 本題主要考查正切函數(shù)的周期性,正弦函數(shù)的定義域和值域,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

10.已知平行四邊形ABCD中,$|\overrightarrow{AB}|=3$,$|\overrightarrow{AD}|=2$,對角線AC交BD于點O,AB上一點E滿足$\overrightarrow{OE}•\overrightarrow{BD}=0$,F(xiàn)為AC上任意一點.
(Ⅰ)求$\overrightarrow{AE}•\overrightarrow{BD}$值;
(Ⅱ)若$|\overrightarrow{BD}|=\sqrt{10}$,求$\overrightarrow{AF}•\overrightarrow{EF}$的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知數(shù)列{an}滿足a1=1,an+1=$\frac{2(n+1)}{n}$an,設${b_n}=\frac{a_n}{n}$,n∈N*
(Ⅰ)證明{bn}是等比數(shù)列;
(Ⅱ)求數(shù)列{log2bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.已知點P為圓x2+y2=25上一動點,若點P由點(3,4)逆時針旋轉45°到達Q點,則點Q的坐標為(-$\frac{\sqrt{2}}{2}$,$\frac{7\sqrt{2}}{2}$).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知函數(shù)f(x)=-sin2x+msinx+2,當x∈[$\frac{π}{6}$,$\frac{2π}{3}$]時函數(shù)有最大值為$\frac{3}{2}$,求此時m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.若$\overrightarrow i=(1,0)、\overrightarrow j=(0,1)$,則與$2\overrightarrow i+3\overrightarrow j$垂直的向量是( 。
A.$3\overrightarrow i+2\overrightarrow j$B.$-2\overrightarrow i+3\overrightarrow j$C.$-3\overrightarrow i+2\overrightarrow j$D.$2\overrightarrow i-3\overrightarrow j$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知函數(shù)f(x)=lnx-x.
(1)求f(x)的單調區(qū)間及最大值;
(2)若數(shù)列{an}的通項公式為${a_n}=1+\frac{1}{2^n}({n∈{N^*}})$,試結合(1)中有關結論證明:a1•a2•a3…an<e(e為自然對數(shù)的底數(shù)).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.某商場以每件30元的價格購進一種商品,試銷中發(fā)現(xiàn)這種商品每天的銷售量m(件)與每件的銷售價x(元)滿足一次函數(shù)m=162-3x,30≤x≤54.
(1)寫出商場賣這種商品每天的銷售利潤y與每件銷售價x之間的函數(shù)關系式;
(2)若商場要想每天獲得最大銷售利潤,每件商品的售價定為多少最合適?最大銷售利潤為多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知函數(shù)f(x)=(x-2)ex
(1)求f(x)在[t,t+2]上的最小值h(t);
(2)若存在兩個不同的實數(shù)α,β,使得f(α)=f(β),求證:α+β<2.

查看答案和解析>>

同步練習冊答案