分析 (1)此題可以按等量關(guān)系“每天的銷售利潤=(銷售價-進(jìn)價)×每天的銷售量”列出函數(shù)關(guān)系式,并由售價大于進(jìn)價,且銷售量大于零求得自變量的取值范圍.
(2)根據(jù)(1)所得的函數(shù)關(guān)系式,利用配方法求二次函數(shù)的最值即可得出答案.
解答 解:(1)由已知得每件商品的銷售利潤為(x-30)元,
那么m件的銷售利潤為y=m(x-30),
又m=162-3x.∴y=(x-30)(162-3x)=-3x2+252x-4860,30≤x≤54
(2)由(1)知對稱軸為x=42,位于x的范圍內(nèi),另拋物線開口向下,
∴當(dāng)x=42時,${y_{max}}=-3×{42^2}+252×42-4860=432$,
∴當(dāng)每件商品的售價定為42元時每天有最大銷售利潤,最大銷售利潤為432元.
點(diǎn)評 本題考查了二次函數(shù)在實(shí)際生活中的應(yīng)用,解答本題的關(guān)鍵是根據(jù)等量關(guān)系:“每天的銷售利潤=(銷售價-進(jìn)價)×每天的銷售量”列出函數(shù)關(guān)系式,另外要熟練掌握二次函數(shù)求最值的方法.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 19和2 | B. | 19和3 | C. | 19和4 | D. | 19和8 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com