17.某幾何體的三視圖如圖所示,則該幾何體的表面積為16+2$\sqrt{3}$+2$\sqrt{5}$;體積為$\frac{20}{3}$.

分析 由三視圖知該幾何體是四棱錐與三棱錐的組合體,結(jié)合圖中數(shù)據(jù)求出它的表面積和體積.

解答 解:由三視圖可知:該幾何體是四棱錐與三棱錐的組合體,如圖所示;

則它的表面積為
S=S正方形BCDE+S梯形PABC+S△EAB+S△PAE+S△PDE+S△PCD
=22+$\frac{1}{2}$×(2+4)×2+$\frac{1}{2}$×2×2+$\frac{1}{2}$×2$\sqrt{6}$×$\sqrt{2}$+$\frac{1}{2}$×2$\sqrt{5}$×2+$\frac{1}{2}$×4×2
=16+2$\sqrt{3}$+2$\sqrt{5}$;
體積為V=V四棱錐E-PABC+V三棱錐P-CDE
=$\frac{1}{3}$×6×2+$\frac{1}{3}$×$\frac{1}{2}$×22×4
=$\frac{20}{3}$.
故答案為:16+2$\sqrt{3}$+2$\sqrt{5}$,$\frac{20}{3}$.

點(diǎn)評(píng) 本題考查了幾何體三視圖的應(yīng)用問(wèn)題,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.我國(guó)古代,9是數(shù)字之極,代表尊貴之意,所以中國(guó)古代皇家建筑中包含許多與9相關(guān)的設(shè)計(jì).例如,北京天壇圓丘的地面由扇環(huán)形的石板鋪成(如圖所示),最高一層是一塊天心石,圍繞它的第一圈有9塊石板,從第二圈開(kāi)始,每一圈比前一圈多9塊,共有9圈,則前9圈的石板總數(shù)是405.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知點(diǎn)P為圓x2+y2=25上一動(dòng)點(diǎn),若點(diǎn)P由點(diǎn)(3,4)逆時(shí)針旋轉(zhuǎn)45°到達(dá)Q點(diǎn),則點(diǎn)Q的坐標(biāo)為(-$\frac{\sqrt{2}}{2}$,$\frac{7\sqrt{2}}{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.若$\overrightarrow i=(1,0)、\overrightarrow j=(0,1)$,則與$2\overrightarrow i+3\overrightarrow j$垂直的向量是( 。
A.$3\overrightarrow i+2\overrightarrow j$B.$-2\overrightarrow i+3\overrightarrow j$C.$-3\overrightarrow i+2\overrightarrow j$D.$2\overrightarrow i-3\overrightarrow j$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知函數(shù)f(x)=lnx-x.
(1)求f(x)的單調(diào)區(qū)間及最大值;
(2)若數(shù)列{an}的通項(xiàng)公式為${a_n}=1+\frac{1}{2^n}({n∈{N^*}})$,試結(jié)合(1)中有關(guān)結(jié)論證明:a1•a2•a3…an<e(e為自然對(duì)數(shù)的底數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知正項(xiàng)數(shù)列{an},$\frac{n}{{a}_{1}+2{a}_{2}+3{a}_{3}+…+n{a}_{n}}$=$\frac{2}{n+2}$(n∈N*),求數(shù)列{an}的通項(xiàng)an

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.某商場(chǎng)以每件30元的價(jià)格購(gòu)進(jìn)一種商品,試銷中發(fā)現(xiàn)這種商品每天的銷售量m(件)與每件的銷售價(jià)x(元)滿足一次函數(shù)m=162-3x,30≤x≤54.
(1)寫出商場(chǎng)賣這種商品每天的銷售利潤(rùn)y與每件銷售價(jià)x之間的函數(shù)關(guān)系式;
(2)若商場(chǎng)要想每天獲得最大銷售利潤(rùn),每件商品的售價(jià)定為多少最合適?最大銷售利潤(rùn)為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.求不定積分∫$\frac{dx}{{x}^{2}\sqrt{{x}^{2}-4}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.下列說(shuō)法正確的是( 。
A.“x2+x-2>0”是“x>1”的充分不必要條件
B.命題“?x∈R,使得2x2-1<0”的否定是“?x∈R,均有2x2-1>0”
C.“若am2<bm2,則a<b”的逆否命題為真命題
D.命題“若$x=\frac{π}{4},則tanx=1$”的逆命題為真命題

查看答案和解析>>

同步練習(xí)冊(cè)答案