【題目】若是一個由數(shù)字1,2,3,4,5,6,7,8,9組成的位正整數(shù),并同時滿足如下兩個條件:
(1)數(shù)字1,2,…,在中各出現(xiàn)兩次;
(2)每兩個相同的數(shù)字之間恰有個數(shù)字.
此時,我們稱這樣的正整數(shù)為“好數(shù)”.例如,當(dāng)時,可以是312 132.試確定滿足條件的正整數(shù)的值,并各寫出一個相應(yīng)的好數(shù).
【答案】見解析
【解析】
由好數(shù)的定義,可知.
對于好數(shù)中的數(shù)字位置按由左到右的順序考慮,如果數(shù)字第一次出現(xiàn)的位置記作,那么,根據(jù)題意,數(shù)字第二次出現(xiàn)的位置應(yīng)該是.于是,.
記,則,即.
因?yàn)?/span>是正整數(shù),可得能被4整除.
又為正整數(shù),所以,或4或7或8.
當(dāng)時,題目中已給出;
當(dāng)時,好數(shù)可以是41 312 432;
當(dāng)時,好數(shù)可以是71 316 435 724 625;
當(dāng)時,好數(shù)可以是8 131 573 468 524 726.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于的一元二次函數(shù),從集合中隨機(jī)取一個數(shù)作為此函數(shù)的二次項(xiàng)系數(shù),從集合中隨機(jī)取一個數(shù)作為此函數(shù)的一次項(xiàng)系數(shù).
(1)若,,求函數(shù)有零點(diǎn)的概率;
(2)若,求函數(shù)在區(qū)間上是增函數(shù)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)f(x)滿足條件f(0)=1,及f(x+1)﹣f(x)=2x.
(1)求函數(shù)f(x)的解析式;
(2)在區(qū)間[﹣1,1]上,y=f(x)的圖象恒在y=2x+m的圖象上方,試確定實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,甲、乙兩個企業(yè)的用電負(fù)荷量關(guān)于投產(chǎn)持續(xù)時間(單位:小時)的關(guān)系均近似地滿足函數(shù).
(1)根據(jù)圖象,求函數(shù)的解析式;
(2)為使任意時刻兩企業(yè)用電負(fù)荷量之和不超過9,現(xiàn)采用錯峰用電的方式,讓企業(yè)乙比企業(yè)甲推遲小時投產(chǎn),求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在甲、乙兩個盒子中分別裝有標(biāo)號為1,2,3,4的四張卡片,現(xiàn)從甲、乙兩個盒子中各取出一張卡片,每張卡片被取出的可能性相等.
(1)求取出的兩張卡片上標(biāo)號為相鄰整數(shù)的概率;
(2)求取出的兩張卡片上標(biāo)號之和能被3整除的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)將某校高二年級某班的學(xué)業(yè)水平測試數(shù)學(xué)成績分為、、、、五組,繪制而成的莖葉圖、頻率分布直方圖如下,由于工作疏忽,莖葉圖有部分被損壞,頻率分布直方圖也不完整,請據(jù)此解答如下問題:(注:該班同學(xué)數(shù)學(xué)成績均在區(qū)間內(nèi))
(1)將頻率分布直方圖補(bǔ)充完整.
(2)該班希望組建兩個數(shù)學(xué)學(xué)習(xí)互助小組,班上數(shù)學(xué)成績最好的兩位同學(xué)分別擔(dān)任兩組組長,將此次成績低于60分的同學(xué)作為組員平均分到兩組,即每組有一名組長和兩名成績低60分的組員,求此次考試成績?yōu)?/span>52分、54分和98分的三名同學(xué)分到同一組的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左頂點(diǎn)為,右焦點(diǎn)為,點(diǎn)在橢圓上.
(1)求橢圓的方程;
(2)若直線與橢圓交于兩點(diǎn),直線分別與軸交于點(diǎn),在軸上,是否存在點(diǎn),使得無論非零實(shí)數(shù)怎樣變化,總有為直角?若存在,求出點(diǎn)的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知四棱臺中,平面ABCD,四邊形ABCD為平行四邊形,,,,,E為DC中點(diǎn).
(1)求證:平面;
(2)求證:;
(3)求三棱錐的高.
(注:棱臺的兩底面相似)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com