18.函數(shù)f(x)=-4x3+kx,對任意的x∈[-1,1],總有f(x)≤1,則實數(shù)k的取值為3.

分析 通過討論x的范圍問題轉化為k≤4x2+$\frac{1}{x}$在(0,1]恒成立且k≥4x2+$\frac{1}{x}$在[-1,0)恒成立,求出a的值即可.

解答 解:由題意得:kx≤4x3+1在[-1,1]恒成立,
x=0時,顯然成立,
x∈(0,1]時,問題轉化為k≤4x2+$\frac{1}{x}$在(0,1]恒成立,
令g(x)=4x2+$\frac{1}{x}$,x∈(0,1],
g′(x)=$\frac{{8x}^{3}-1}{{x}^{2}}$,
令g′(x)>0,解得:x>$\frac{1}{2}$,
令g′(x)<0,解得:x<$\frac{1}{2}$,
故g(x)在(0,$\frac{1}{2}$)遞減,在($\frac{1}{2}$,1]遞增,
故g(x)min=g($\frac{1}{2}$)=3,
故k≤3,
x∈[-1,0)時,問題轉化為k≥4x2+$\frac{1}{x}$在[-1,0)恒成立,
令h(x)=4x2+$\frac{1}{x}$,x∈[-1,0),
g′(x)=$\frac{{8x}^{3}-1}{{x}^{2}}$<0,
故g(x)在[-1,0)遞減,
故g(x)max=g(-1)=3,
故k≥3,綜上k=3,
故答案為:3.

點評 本題考查了函數(shù)恒成立問題,考查導數(shù)的應用以及轉化思想,是一道中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

8.實數(shù)x,y滿足條件$\left\{\begin{array}{l}{x+2y≤4}\\{x+y≥1}\\{y≥0}\end{array}\right.$,則3x+5y的最大值為( 。
A.12B.9C.8D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知{an}是各項均為正數(shù)的等差數(shù)列,其前n項和為Sn,且a2•a3=40,S4=26.
(1)求數(shù)列{an}的通項公式;
(2)若數(shù)列{bn}的前n項和為Tn,且b1=1,3bn+1=2(a${\;}_{_{n}}$+1).
①求證:數(shù)列{bn}是等比數(shù)列;
②求滿足Sn>Tn的所有正整數(shù)n的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.給一個四棱錐的每個頂點染上一種顏色,并使得同一條棱的兩端異色如果有4種顏色可供使用,則共有x種不同的染色方法;如果有5種顏色可供使用,則共有y種不同的染色方法,那么y-x的值為348.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.已知半徑為1的扇形面積為$\frac{π}{3}$,則此扇形的周長為$\frac{2π}{3}$+2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知函數(shù)f(x)=loga$\frac{1-mx}{x-1}$(a>0且a≠1)是奇函數(shù).
(1)求實數(shù)m的值;
(2)判斷函數(shù)f(x)在區(qū)間(1,+∞)上的單調性并說明理由;
(3)當x∈(n,a-2)時,函數(shù)f(x)的值域為(1,+∞),求實數(shù)n,a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知函數(shù)f(x)=ax2+(a-2)x-2,a∈R.
(1)若關于x的不等式f(x)≤0的解集為[-1,2],求實數(shù)a的值;
(2)當a<0時,解關于x的不等式f(x)≤0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.已知{an}為等差數(shù)列,a1+a2+a3=-3,a4+a5+a6=6,則Sn=$\frac{{n}^{2}-5n}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.如圖,OA、OB是兩條公路(近似看成兩條直線),$∠AOB=\frac{π}{3}$,在∠AOB內有一紀念塔P(大小忽略不計),已知P到直線OA、OB的距離分別為PD、PE,PD=6千米,PE=12千米.現(xiàn)經過紀念塔P修建一條直線型小路,與兩條公路OA、OB分別交于點M、N.
(1)求紀念塔P到兩條公路交點O處的距離;
(2)若紀念塔P為小路MN的中點,求小路MN的長.

查看答案和解析>>

同步練習冊答案