【題目】如圖,在平面直角坐標(biāo)系中,,分別為橢圓的左、右焦點(diǎn).動(dòng)直線過點(diǎn),且與橢圓相交于,兩點(diǎn)(直線與軸不重合).
(1)若點(diǎn)的坐標(biāo)為,求點(diǎn)坐標(biāo);
(2)點(diǎn),設(shè)直線,的斜率分別為,,求證:;
(3)求面積最大時(shí)的直線的方程.
【答案】(1) (2)見證明;(3)
【解析】
(1)由已知得到直線l的方程,與橢圓方程聯(lián)立即可求得點(diǎn)B的坐標(biāo);
(2)設(shè)直線l的方程為x=ty+1,與橢圓方程聯(lián)立,利用根與系數(shù)的關(guān)系及斜率公式即可證明k1+k2=0;
(3)△AF1B的面積S|F1F2||y1﹣y2|=|y1﹣y2|.把(2)中的根與系數(shù)的關(guān)系代入,可得S.設(shè)函數(shù)f(x)=9x (x≥1),利用導(dǎo)數(shù)可得f(x)=9x在[1,+∞)上單調(diào)遞增,得到當(dāng)t2+1=1,即t=0時(shí),9(t2+1)取最小值10.由此可得直線l的方程為x=1.
(1)因?yàn)橹本經(jīng)過點(diǎn), ,
所以直線的方程為.
由解得或
所以.
(2)因?yàn)橹本與軸不重合,故可設(shè)直線的方程為.
設(shè),.
由得,
所以, ,
因?yàn)?/span>,在直線上,所以, ,
所以, ,
從而 .
因?yàn)?/span>,
所以.
(3)方法一:的面積 .
由(2)知, , ,
故
,
設(shè)函數(shù).
因?yàn)?/span>,所以在上單調(diào)遞增,
所以當(dāng),即時(shí),取最小值10.
即當(dāng)時(shí),的面積取最大值,此時(shí)直線的方程為.
方法二:的面積 .
由(2)知, , ,
故
,
因?yàn)?/span>,所以,
所以,即時(shí),的面積取最大值.
因此,的面積取最大值時(shí),直線的方程為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)直線分別是函數(shù) 圖象上點(diǎn)處的切線,垂直相交于點(diǎn),且分別與軸相交于點(diǎn)A,B,則△PAB的面積的取值范圍是( )
A. (1,+∞) B. (0,2) C. (0,+∞) D. (0,1)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,,分別為橢圓的左、右焦點(diǎn).動(dòng)直線過點(diǎn),且與橢圓相交于,兩點(diǎn)(直線與軸不重合).
(1)若點(diǎn)的坐標(biāo)為,求點(diǎn)坐標(biāo);
(2)點(diǎn),設(shè)直線,的斜率分別為,,求證:;
(3)求面積最大時(shí)的直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正四棱柱的底面邊長為,側(cè)棱長為1,求:
(1)直線與直線所成角的余弦值;
(2)平面與平面所成二面角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱中,側(cè)棱底面,且, 是棱的中點(diǎn),點(diǎn)在側(cè)棱上運(yùn)動(dòng).
(1)當(dāng)是棱的中點(diǎn)時(shí),求證: 平面;
(2)當(dāng)直線與平面所成的角的正切值為時(shí),求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖四棱錐中, 是梯形,AB∥CD, ,AB=PD=4,CD=2, ,M為CD的中點(diǎn),N為PB上一點(diǎn),且.
(1)若MN∥平面PAD;
(2)若直線AN與平面PBC所成角的正弦值為,求異面直線AD與直線CN所成角的余弦值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)集合,集合.
(1)若“”是“”的必要條件,求實(shí)數(shù)的取值范圍;
(2)若中只有一個(gè)整數(shù),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】邊長為2的正三角形ABC中,點(diǎn)D,E,G分別是邊AB,AC,BC的中點(diǎn),連接DE,連接AG交DE于點(diǎn)現(xiàn)將沿DE折疊至的位置,使得平面平面BCED,連接A1G,EG.
證明:DE∥平面A1BC
求點(diǎn)B到平面A1EG的距離.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com