【題目】如圖四棱錐中, 是梯形,AB∥CD, ,AB=PD=4,CD=2, ,M為CD的中點,N為PB上一點,且.
(1)若MN∥平面PAD;
(2)若直線AN與平面PBC所成角的正弦值為,求異面直線AD與直線CN所成角的余弦值。
【答案】(1)見解析;(2).
【解析】試題分析:
(1)由題意在,連接EN,DE,結(jié)合條件可得四邊形DMNE是平行四邊形,故得MN∥DE,由線面平行的判定可得結(jié)論成立.(2)過點D作DHAB于H,則DHCD,建立空間直角坐標系,利用直線AN的方向向量與平面PBC的法向量并結(jié)合條件可得,然后根據(jù)兩向量的夾角可得異面直線所成角的余弦值.
試題解析:
(1)證明:當則
,連接EN,DE,
EN∥AB,且,
M為CD的中點,CD=2,
,
又AB∥CD,
EN∥DM,EN=DM,
四邊形DMNE是平行四邊形,
MN∥DE,
又 平面PAD,MN平面PAD,
MN∥平面PAD.
(2)如圖所示,過點D作DHAB于H,則DHCD.以D為坐標原點建立如圖所示的空間直角坐標D- yz.
則D(0,0,0),M(0,1,0),C(0,2,0),B(2,2,0),A(2,-2,0),
P(0,0,4),
∴,
.
該平面PBC的法向量為,
則由,得.
令z=1,則.
該直線AN與平面PBC所成的角為,則
,
解得
∴
設(shè)直線AD與直線CN所成角為,
則.
所以直線AD與直線CN所成角的余弦值為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分12分)一個盒子里裝有三張卡片,分別標記有數(shù)字,,,這三張卡片除標記的數(shù)字外完全相同。隨機有放回地抽取次,每次抽取張,將抽取的卡片上的數(shù)字依次記為,,.
(Ⅰ)求“抽取的卡片上的數(shù)字滿足”的概率;
(Ⅱ)求“抽取的卡片上的數(shù)字,,不完全相同”的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)舉行了一次“環(huán)保知識競賽”活動. 為了了解本次競賽學(xué)生成績情況,從中抽取了部分學(xué)生的分數(shù)(得分取正整數(shù),滿分為100分)作為樣本(樣本容量為)進行統(tǒng)計. 按照[50,60),[60,70),[70,80),[80,90),[90,100]的分組作出頻率分布直方圖,并作出樣本分數(shù)的莖葉圖(圖中僅列出了得分在[50,60),[90,100]的數(shù)據(jù)).
(1)求樣本容量和頻率分布直方圖中的,的值;
(2)在選取的樣本中,從競賽成績是80分以上(含80分)的同學(xué)中隨機抽取3名同學(xué)到市政廣場參加環(huán)保知識宣傳的志愿者活動,設(shè)表示所抽取的3名同學(xué)中得分在[80,90)的學(xué)生人數(shù),求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系中,已知圓經(jīng)過拋物線與坐標軸的三個交點.
(1)求圓的方程;
(2)經(jīng)過點的直線與圓相交于,兩點,若圓在,兩點處的切線互相垂直,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,,分別為橢圓的左、右焦點.動直線過點,且與橢圓相交于,兩點(直線與軸不重合).
(1)若點的坐標為,求點坐標;
(2)點,設(shè)直線,的斜率分別為,,求證:;
(3)求面積最大時的直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,函數(shù)F(x)=min{2|x1|,x22ax+4a2},
其中min{p,q}=
(Ⅰ)求使得等式F(x)=x22ax+4a2成立的x的取值范圍;
(Ⅱ)(ⅰ)求F(x)的最小值m(a);
(ⅱ)求F(x)在區(qū)間[0,6]上的最大值M(a).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(1)若是偶函數(shù),求的值;
(2)若存在,使得成立,求實數(shù)的取值范圍;
(3)設(shè)函數(shù),若在有零點,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com