3.已知a,b,c為三條不重合的直線,α,β,γ為三個不重合的平面,給出四個命題:
①$\left.\begin{array}{l}{α∥c}\\{β∥c}\end{array}\right\}$⇒α∥β;②$\left.\begin{array}{l}{α∥γ}\\{β∥γ}\end{array}\right\}$⇒α∥β;③$\left.\begin{array}{l}{α∥c}\\{a∥c}\end{array}\right\}$⇒a∥α;④$\left.\begin{array}{l}{a∥γ}\\{β∥γ}\end{array}\right\}$⇒a∥β
其中正確的命題是( 。
A.①②③B.①④C.D.①③④

分析 對4個命題分別進(jìn)行判斷,即可得出結(jié)論.

解答 解:①$\left.\begin{array}{l}{α∥c}\\{β∥c}\end{array}\right\}$⇒α∥β或α,β相交,不正確;
②$\left.\begin{array}{l}{α∥γ}\\{β∥γ}\end{array}\right\}$⇒α∥β,由平面與平面平行的判定定理可知正確;
③$\left.\begin{array}{l}{α∥c}\\{a∥c}\end{array}\right\}$⇒a∥α或a?α,不正確;
④$\left.\begin{array}{l}{a∥γ}\\{β∥γ}\end{array}\right\}$⇒a∥β或a?β,不正確.
故選C.

點(diǎn)評 本題主要考查了直線與平面平行的判定,以及平面與平面平行的判定,同時考查了對定理的理解,屬于綜合題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知x,y滿足$\left\{\begin{array}{l}x≥2\\ x+y≤4\\ 2x-y-m≤0\end{array}\right.$,若目標(biāo)函數(shù)z=3x+y的最大值為10,則m的值為5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.一個圓的圓心在拋物線y2=16x上,且該圓經(jīng)過拋物線的頂點(diǎn)和焦點(diǎn),若圓心在第一象限,則該圓的標(biāo)準(zhǔn)方程是(x-2)2+(y-4$\sqrt{2}$)2=36.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.函數(shù)f(x)=x-$\frac{2}{x}$的圖象關(guān)于(  )
A.y軸對稱B.原點(diǎn)對稱C.直線y=x對稱D.直線y=-x對稱

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知指數(shù)函數(shù)$f(x)={(\frac{1}{2})^x}$,則使得f(m)>1成立的實(shí)數(shù)m的取值范圍是(  )
A.(1,+∞)B.(0,+∞)C.(-∞,1)D.(-∞,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖,正三棱錐P-ABC,已知AB=2,PA=3
(1)求此三棱錐體積
(2)若M是側(cè)面PBC上一點(diǎn),試在面PBC上過點(diǎn)M畫一條與棱PA垂直的線段,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.設(shè)集合A={m+1,-3},集合B={2m+1,m-3}.若A∩B={-3},則實(shí)數(shù)m的值為-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知函數(shù)$f(x)=\left\{\begin{array}{l}a{x^2}+1,({x≥0})\\(a+3){e^{ax}},({x<0})\end{array}\right.$為R上的單調(diào)函數(shù),則實(shí)數(shù)a的取值范圍是( 。
A.[-1,0)B.(0,+∞)C.[-2,0)D.(-∞,-2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.三角形ABC中,AB=2且AC=2BC,則三角形ABC面積的最大值為$\frac{4}{3}$.

查看答案和解析>>

同步練習(xí)冊答案