【題目】以下三個(gè)關(guān)于圓錐曲線的命題中:

①設(shè)為兩個(gè)定點(diǎn),為非零常數(shù),若,則動(dòng)點(diǎn)的軌跡是雙曲線;

②方程的兩根可分別作為橢圓和雙曲線的離心率;

③雙曲線與橢圓有相同的焦點(diǎn);

④已知拋物線,以過焦點(diǎn)的一條弦為直徑作圓,則此圓與準(zhǔn)線相切,其中真命題為__________.(寫出所有真命題的序號)

【答案】②③④

【解析】

A、B為兩個(gè)定點(diǎn),K為非零常數(shù),若|PA||PB|=K,當(dāng)K=|AB|時(shí),動(dòng)點(diǎn)P的軌跡是兩條射線,故①錯(cuò)誤;

方程2x2﹣5x+2=0的兩根為2,可分別作為橢圓和雙曲線的離心率,故②正確;

雙曲線=1的焦點(diǎn)坐標(biāo)為(±,0),橢圓﹣y2=1的焦點(diǎn)坐標(biāo)為(±,0),故③正確;

設(shè)AB為過拋物線焦點(diǎn)F的弦,PAB中點(diǎn),A、B、P在準(zhǔn)線l上射影分別為M、N、Q,

AP+BP=AM+BN

PQ=AB,

∴以AB為直徑作圓則此圓與準(zhǔn)線l相切,故④正確

故正確的命題有:②③④

故答案為:②③④

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著共享單車的成功運(yùn)營,更多的共享產(chǎn)品逐步走入大家的世界,共享汽車、共享籃球、共享充電寶等各種共享產(chǎn)品層出不窮.某公司隨機(jī)抽取人對共享產(chǎn)品對共享產(chǎn)品是否對日常生活有益進(jìn)行了問卷調(diào)查,并對參與調(diào)查的人中的性別以及意見進(jìn)行了分類,得到的數(shù)據(jù)如下表所示:

(Ⅰ)根據(jù)表中的數(shù)據(jù),能否在犯錯(cuò)的概率不超過的前提下,認(rèn)為對共享產(chǎn)品的態(tài)度與性別有關(guān)系?

Ⅱ)現(xiàn)按照分層抽樣從認(rèn)為共享產(chǎn)品增多對生活無益的人員中隨機(jī)抽取人,再從人中隨機(jī)抽取人贈(zèng)送超市購物券作為答謝,求恰有人是女性的概率.

參考公式 .

臨界值表:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】是定義在上的奇函數(shù),對,均有,已知當(dāng)時(shí), ,則下列結(jié)論正確的是( )

A. 的圖象關(guān)于對稱 B. 有最大值1

C. 上有5個(gè)零點(diǎn) D. 當(dāng)時(shí),

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知曲線的極坐標(biāo)方程是,以極點(diǎn)為原點(diǎn),極軸為軸的正半軸建立平面直角坐標(biāo)系,直線的參數(shù)方程為 (為參數(shù))

寫出直線的普通方程與曲線的直角坐標(biāo)方程;

(2)設(shè)曲線經(jīng)過伸縮變換后得到曲線,設(shè)上任意一點(diǎn),

的最小值,并求相應(yīng)的點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)若存在使得成立,求實(shí)數(shù)的取值范圍;

(Ⅱ)求證:當(dāng)時(shí),在(1)的條件下, 成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)當(dāng)時(shí),求函數(shù)的極值;

(2)當(dāng)時(shí),若對任意都有,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),則下列結(jié)論正確的是(  )

A. 導(dǎo)函數(shù)為

B. 函數(shù)f(x)的圖象關(guān)于直線對稱

C. 函數(shù)f(x)在區(qū)間上是增函數(shù)

D. 函數(shù)f(x)的圖象可由函數(shù)y3cos 2x的圖象向右平移個(gè)單位長度得到

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中, , , , 中點(diǎn)(如圖1).將沿折起到圖2中的位置,得到四棱錐.

(1)將沿折起的過程中, 平面是否成立?并證明你的結(jié)論;

(2)若,過的平面交于點(diǎn),且的中點(diǎn),求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(1)討論函數(shù)的單調(diào)性;

(2)證明:當(dāng)時(shí),函數(shù)有最小值.設(shè)的最小值為,求函數(shù)的值域.

查看答案和解析>>

同步練習(xí)冊答案