精英家教網 > 高中數學 > 題目詳情

【題目】已知函數.

(1)當時,求函數的極值;

(2)當時,若對任意都有,求實數的取值范圍.

【答案】(1) (2)

【解析】

(1)把a=2代入,找出導函數為0的自變量,看在自變量左右兩側導函數的符號來求極值即可.

(2)先根據導函數的解析式確定函數f(x)的單調性,然后根據a的不同范圍進行討論進而確定其答案.

解:(1)當時,

所以當時,,為增函數

時,,為減函數

時,,為增函數

所以 ,

(2)

所以上單調遞增;在上單調遞減;

上單調遞增;

時,函數上單調遞增

所以函數上的最大值是

由題意得,解得:,

因為, 所以此時的值不存在

時,,此時上遞增,在上遞減

所以函數上的最大值是

由題意得,解得:

綜上的取值范圍是

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖,在直三棱柱中,分別是棱,的中點,點棱上,且,,.

(1)求證:平面;

(2)當時,求三棱錐的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在三棱柱, 平面 , .

1)證明:平面平面;

2)若四棱柱的體積為,求該三棱柱的側面積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】對某校高三年級學生參加社區(qū)服務次數進行統(tǒng)計,隨機抽取M名學生作為樣本,得到這M名學生參加社區(qū)服務的次數.根據此數據作出了頻數與頻率的統(tǒng)計表如下,頻率分布直方圖如圖:

分組

頻數

頻率

[10,15)

10

0.25

[15,20)

24

n

[20,25)

m

p

[25,30)

2

0.05

合計

M

1

(1)求出表中M,p及圖中a的值;

(2)若該校高三學生有240人,試估計該校高三學生參加社區(qū)服務的次數在區(qū)間[10,15)內的人數;

(3)在所取樣本中,從參加社區(qū)服務的次數不少于20次的學生中任選2人,求至多一人參加社區(qū)服務次數在區(qū)間[25,30)內的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】以下三個關于圓錐曲線的命題中:

①設為兩個定點,為非零常數,若,則動點的軌跡是雙曲線;

②方程的兩根可分別作為橢圓和雙曲線的離心率;

③雙曲線與橢圓有相同的焦點;

④已知拋物線,以過焦點的一條弦為直徑作圓,則此圓與準線相切,其中真命題為__________.(寫出所有真命題的序號)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數,若關于的方程的不同實數根的個數為,則的所有可能值為( )

A. 3 B. 1或3 C. 3或5 D. 1或3或5

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓的左右焦點分別為 上的動點到兩焦點的距離之和為4,當點運動到橢圓的上頂點時,直線恰與以原點為圓心,以橢圓的離心率為半徑的圓相切.

(1)求橢圓的方程;

(2)設橢圓的左右頂點分別為,若交直線兩點.問以為直徑的圓是否過定點?若過定點,請求出該定點坐標;若不過定點,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如下圖,過拋物線上一定點,作兩條直線分別交拋物線于,

(1)求該拋物線上縱坐標為的點到其焦點的距離;

(2)的斜率存在且傾斜角互補時,求的值,并證明直線的斜率是非零常數.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為了在夏季降溫和冬季供暖時減少能源損耗,房屋的屋頂和外墻需要建造隔熱層。某幢建筑物要建造可使用20年的隔熱層,每厘米厚的隔熱層建造成本為6萬元。該建筑物每年的能源消耗費用C(單位:萬元)與隔熱層厚度x(單位:cm)滿足關系:Cx=若不建隔熱層,每年能源消耗費用為8萬元。設fx)為隔熱層建造費用與20年的能源消耗費用之和。

)求k的值及f(x)的表達式。

)隔熱層修建多厚時,總費用f(x)達到最小,并求最小值。

查看答案和解析>>

同步練習冊答案