【題目】某縣政府為了引導(dǎo)居民合理用水,決定全面實(shí)施階梯水價(jià),階梯水價(jià)原則上以住宅(一套住宅為一戶)的月用水量為基準(zhǔn)定價(jià):若用水量不超過12噸時(shí),按4元/噸計(jì)算水費(fèi);若用水量超過12噸且不超過14噸時(shí),超過12噸部分按6.60元/噸計(jì)算水費(fèi);若用水量超過14噸時(shí),超過14噸部分按7.80元/噸計(jì)算水費(fèi).為了了解全市居民月用水量的分布情況,通過抽樣,獲得了100戶居民的月用水量(單位:噸),將數(shù)據(jù)按照,,…,分成8組,制成了如圖1所示的頻率分布直方圖.
(圖1) (圖2)
(Ⅰ)通過頻率分布直方圖,估計(jì)該市居民每月的用水量的平均數(shù)和中位數(shù)(精確到0.01);
(Ⅱ)求用戶用水費(fèi)用(元)關(guān)于月用水量(噸)的函數(shù)關(guān)系式;
(Ⅲ)如圖2是該縣居民李某2017年1~6月份的月用水費(fèi)(元)與月份的散點(diǎn)圖,其擬合的線性回歸方程是.若李某2017年1~7月份水費(fèi)總支出為294.6元,試估計(jì)李某7月份的用水噸數(shù).
【答案】(Ⅰ)平均數(shù)為7.96,中位數(shù)為8.15;(Ⅱ);(Ⅲ)13噸.
【解析】試題分析:
本題考查頻率分布直方圖的應(yīng)用及線性回歸方程的應(yīng)用。(Ⅰ)根據(jù)用頻率分布直方圖估計(jì)平均數(shù)、中位數(shù)的方法計(jì)算即可。(Ⅱ)結(jié)合題意可用分段函數(shù)表示出與的關(guān)系。(Ⅲ)先由樣本中點(diǎn)過回歸直線的結(jié)論求得1~6月份月用水費(fèi)約為 7月份的水費(fèi)為元,再根據(jù)回歸方程求得7月份的用水噸數(shù)。
試題解析:
(Ⅰ)由頻率分布直方圖可得該市居民每月的用水量的平均數(shù)為
。
設(shè)中位數(shù)為,
則,
解得。
(Ⅱ)設(shè)居民月用水量為噸,相應(yīng)的水費(fèi)為元,則由題意得
即
(Ⅲ)設(shè)李某2017年1~6月份月用水費(fèi)(元)與月份的對應(yīng)點(diǎn)為,它們的平均值分別為,,
則,
又點(diǎn)在直線上,
所以,
因此,
所以7月份的水費(fèi)為元.
由(2)知,當(dāng)時(shí),,
所以李某7月份的用水噸數(shù)約為13噸.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中, 為坐標(biāo)原點(diǎn), 、是雙曲線上的兩個(gè)動點(diǎn),動點(diǎn)滿足,直線與直線斜率之積為2,已知平面內(nèi)存在兩定點(diǎn)、,使得為定值,則該定值為________
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=a2x2(a>0),g(x)=bln x.
(1)若函數(shù)y=f(x)圖象上的點(diǎn)到直線x-y-3=0距離的最小值為2 ,求a的值;
(2)對于函數(shù)f(x)與g(x)定義域上的任意實(shí)數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設(shè)a=,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) , .
(1)若存在極值點(diǎn)1,求的值;
(2)若存在兩個(gè)不同的零點(diǎn),求證: (為自然對數(shù)的底數(shù), ).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以A表示值域?yàn)镽的函數(shù)組成的集合,B表示具有如下性質(zhì)的函數(shù)組成的集合:對于函數(shù),存在一個(gè)正數(shù)M,使得函數(shù)的值域包含于區(qū)間[-M,M]。例如,當(dāng), 時(shí), ,現(xiàn)有如下命題:
①設(shè)函數(shù)的定義域?yàn)镈,則“”的充要條件是“”;
②若函數(shù),則有最大值和最小值;
③若函數(shù), 的定義域相同,且, ,則
④若函數(shù),則有最大值且,
其中的真命題有_____________。(寫出所有真命題的序號)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(, ).
(1)如果曲線在點(diǎn)處的切線方程為,求, 的值;
(2)若, ,關(guān)于的不等式的整數(shù)解有且只有一個(gè),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(I)若曲線存在斜率為-1的切線,求實(shí)數(shù)a的取值范圍;
(II)求的單調(diào)區(qū)間;
(III)設(shè)函數(shù),求證:當(dāng)時(shí), 在上存在極小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù), .
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)設(shè),其中為函數(shù)的導(dǎo)函數(shù).判斷在定義域內(nèi)是否為單調(diào)函數(shù),并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com