【題目】以A表示值域為R的函數(shù)組成的集合,B表示具有如下性質(zhì)的函數(shù)組成的集合:對于函數(shù),存在一個正數(shù)M,使得函數(shù)的值域包含于區(qū)間[-M,M]。例如,當, 時, ,現(xiàn)有如下命題:

①設函數(shù)的定義域為D,則“”的充要條件是“;

②若函數(shù),則有最大值和最小值;

③若函數(shù) 的定義域相同,且, ,則

④若函數(shù),則有最大值且

其中的真命題有_____________。(寫出所有真命題的序號)

【答案】①③④

【解析】對于,若f(x)∈A,則f(x)的值域為R,于是,對任意的b∈R,一定存在a∈D,使得f(a)=b,故正確;

對于,取函數(shù)f(x)=x(﹣1<x<1),其值域為(﹣1,1),于是,存在M=1,使得f(x)的值域包含于[﹣M,M]=[﹣1,1],但此時f(x)沒有最大值和最小值,故錯誤;

對于,當f(x)∈A時,由可知,對任意的b∈R,存在a∈D,使得f(a)=b,

g(x)∈B時,對于函數(shù)f(x)+g(x),如果存在一個正數(shù)M,使得f(x)+g(x)的值域包含于[﹣M,M],那么對于該區(qū)間外的某一個b0∈R,一定存在一個a0∈D,使得f(a0)=b﹣g(a0),即f(a0)+g(a0)=b0[﹣M,M],故正確;

此時f(x)= (x>﹣2),易知f(x)[﹣ ],存在正數(shù)M=,使得f(x)[﹣M,M],故正確;

故答案為:①③④。

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知定義在R的函數(shù)是偶函數(shù),且滿足上的解析式為,過點作斜率為k的直線l,若直線l與函數(shù)的圖象至少有4個公共點,則實數(shù)k的取值范圍是

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】不是直角三角形,它的三個角所對的邊分別為,已知.

1求證: ;

2如果面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】【2018吉林長春高三下學期二模為了打好脫貧攻堅戰(zhàn),某貧困縣農(nóng)科院針對玉米種植情況進行調(diào)研,力爭有效的改良玉米品種,為農(nóng)民提供技術(shù)支.現(xiàn)對已選出的一組玉米的莖高進行統(tǒng)計,獲得莖葉圖如下圖(單位:厘米),設莖高大于或等于180厘米的玉米為高莖玉米,否則為矮莖玉米.

(I)完成列聯(lián)表,并判斷是否可以在犯錯誤的概率不超過1%的前提下,認為抗倒伏與玉米矮莖有關(guān)?

(II)為了改良玉米品種,現(xiàn)采用分層抽樣的方法從抗倒伏的玉米中抽出5株,再從這5株玉米中選取2株進行雜交試驗,選取的植株均為矮莖的概率是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某縣政府為了引導居民合理用水,決定全面實施階梯水價,階梯水價原則上以住宅(一套住宅為一戶)的月用水量為基準定價:若用水量不超過12噸時,按4/噸計算水費;若用水量超過12噸且不超過14噸時,超過12噸部分按6.60/噸計算水費;若用水量超過14噸時,超過14噸部分按7.80/噸計算水費.為了了解全市居民月用水量的分布情況,通過抽樣,獲得了100戶居民的月用水量(單位:噸),將數(shù)據(jù)按照,…,分成8組,制成了如圖1所示的頻率分布直方圖.

(圖1) (圖2)

Ⅰ)通過頻率分布直方圖,估計該市居民每月的用水量的平均數(shù)和中位數(shù)(精確到0.01);

求用戶用水費用(元)關(guān)于月用水量(噸)的函數(shù)關(guān)系式;

Ⅲ)如圖2是該縣居民李某20171~6月份的月用水費(元)與月份的散點圖,其擬合的線性回歸方程是.若李某20171~7月份水費總支出為294.6元,試估計李某7月份的用水噸數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某高校在2017年的自主招生考試成績中隨機抽取100名學生的筆試成績,按成績分組,得到的頻率分布表如下左圖所示。

(1)請先求出頻率分布表中①、②位置相應數(shù)據(jù),再在答題紙上完成下列頻率分布直方圖;

(2)為了能選拔出最優(yōu)秀的學生,高校決定在筆試成績高的第3、4、5組中用分層抽樣抽取6名學生進入第二輪面試,求第3、4、5組每組各抽取多少名學生進入第二輪面試?

(3)在(2)的前提下,學校決定在6名學生中隨機抽取2名學生接受A教官進行面試,求:第4組至少有一名學生被考官A面試的概率?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)判斷函數(shù)在區(qū)間上的單調(diào)性;

(Ⅱ)若函數(shù)在區(qū)間上滿足恒成立,求實數(shù)a的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=2sinxcos(x-).

(Ⅰ)求函數(shù)f(x)的最小正周期.

(Ⅱ)當x∈[0, ]時,求函數(shù)f(x)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓 的離心率為,且上焦點為,過的動直線與橢圓相交于、兩點.設點,記、的斜率分別為

1)求橢圓的方程;

2)如果直線的斜率等于,求的值;

3)探索是否為定值?如果是,求出該定值;如果不是,求出的取值范圍.

查看答案和解析>>

同步練習冊答案