1.在平面直角坐標(biāo)系中,已知A(1,0),B(0,-1),P是曲線y=$\sqrt{1-{x}^{2}}$上一個(gè)動(dòng)點(diǎn),則$\overrightarrow{BP}$•$\overrightarrow{BA}$的取值范圍是[0,1+$\sqrt{2}$].

分析 設(shè)P(cosα,sinα),α∈[0,π],則$\overrightarrow{BA}$=(1,1),$\overrightarrow{BP}$=(cosα,sinα+1),由此能求出$\overrightarrow{BP}$•$\overrightarrow{BA}$的取值范圍.

解答 解:∵在平面直角坐標(biāo)系中,A(1,0),B(0,-1),
P是曲線y=$\sqrt{1-{x}^{2}}$上一個(gè)動(dòng)點(diǎn),
∴設(shè)P(cosα,sinα),α∈[0,π],
∴$\overrightarrow{BA}$=(1,1),$\overrightarrow{BP}$=(cosα,sinα+1),
$\overrightarrow{BP}•\overrightarrow{BA}$=cosα+sinα+1=$\sqrt{2}sin(α+\frac{π}{4})+1$,
∴$\overrightarrow{BP}$•$\overrightarrow{BA}$的取值范圍是[0,1+$\sqrt{2}$].
故答案為:[0,1+$\sqrt{2}$].

點(diǎn)評(píng) 本題考查向量的數(shù)量積的取值范圍的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意平面向量數(shù)量積的性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.雙曲線x2-$\frac{{y}^{2}}{^{2}}$=1(b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,直線l過(guò)F2且與雙曲線交于A,B兩點(diǎn).
(1)直線l的傾斜角為$\frac{π}{2}$,△F1AB是等邊三角形,求雙曲線的漸近線方程;
(2)設(shè)b=$\sqrt{3}$,若l的斜率存在,且($\overrightarrow{{F}_{1}A}$+$\overrightarrow{{F}_{1}B}$)•$\overrightarrow{AB}$=0,求l的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.定義“規(guī)范01數(shù)列”{an}如下:{an}共有2m項(xiàng),其中m項(xiàng)為0,m項(xiàng)為1,且對(duì)任意k≤2m,a1,a2,…,ak中0的個(gè)數(shù)不少于1的個(gè)數(shù),若m=4,則不同的“規(guī)范01數(shù)列”共有( 。
A.18個(gè)B.16個(gè)C.14個(gè)D.12個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知S是數(shù)集,若對(duì)任意a、b∈S都有a+b、a-b,ab、$\frac{a}$(b≠0)∈S,則稱S是數(shù)域.下列四個(gè)數(shù)集中,數(shù)域的個(gè)數(shù)是( 。
①整數(shù)集Z;②有理數(shù)集Q;③實(shí)數(shù)集R;④數(shù)集F={a+$\sqrt{2}$b|a,b∈Q}.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.設(shè)x∈R,則不等式|x-3|<1的解集為(2,4).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.有一塊正方形EFGH,EH所在直線是一條小河,收獲的蔬菜可送到F點(diǎn)或河邊運(yùn)走.于是,菜地分別為兩個(gè)區(qū)域S1和S2,其中S1中的蔬菜運(yùn)到河邊較近,S2中的蔬菜運(yùn)到F點(diǎn)較近,而菜地內(nèi)S1和S2的分界線C上的點(diǎn)到河邊與到F點(diǎn)的距離相等,現(xiàn)建立平面直角坐標(biāo)系,其中原點(diǎn)O為EF的中點(diǎn),點(diǎn)F的坐標(biāo)為(1,0),如圖
(1)求菜地內(nèi)的分界線C的方程;
(2)菜農(nóng)從蔬菜運(yùn)量估計(jì)出S1面積是S2面積的兩倍,由此得到S1面積的經(jīng)驗(yàn)值為$\frac{8}{3}$.設(shè)M是C上縱坐標(biāo)為1的點(diǎn),請(qǐng)計(jì)算以EH為一邊,另一邊過(guò)點(diǎn)M的矩形的面積,及五邊形EOMGH的面積,并判斷哪一個(gè)更接近于S1面積的“經(jīng)驗(yàn)值”.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.從一副52張的撲克牌中任取兩張,則這兩張牌的花色相同的概率是(  )
A.$\frac{4{C}_{13}^{2}}{{C}_{52}^{2}}$B.$\frac{{C}_{13}^{2}}{{C}_{52}^{2}}$C.$\frac{2}{52}$D.$\frac{13}{52}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知函數(shù)f(x)=2cosωx(ω>0),且函數(shù)y=f(x)圖象的兩相鄰對(duì)稱軸間的距離為$\frac{π}{2}$.
(1)求f($\frac{π}{8}$)的值;
(2)將函數(shù)y=f(x)的圖象向右平移$\frac{π}{6}$個(gè)單位后,再將得到的圖象上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的4倍,縱坐標(biāo)不變,得到函數(shù)y=g(x)的圖象,求g(x)的單調(diào)遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知f(x)是定義在R上的偶函數(shù),且在區(qū)間(-∞,0)上單調(diào)遞增,若實(shí)數(shù)a滿足f(2|a-1|)>f(-$\sqrt{2}$),則a的取值范圍是(  )
A.(-∞,$\frac{1}{2}$)B.(-∞,$\frac{1}{2}$)∪($\frac{3}{2}$,+∞)C.($\frac{1}{2}$,$\frac{3}{2}$)D.($\frac{3}{2}$,+∞)

查看答案和解析>>

同步練習(xí)冊(cè)答案