分析 設(shè)P(cosα,sinα),α∈[0,π],則$\overrightarrow{BA}$=(1,1),$\overrightarrow{BP}$=(cosα,sinα+1),由此能求出$\overrightarrow{BP}$•$\overrightarrow{BA}$的取值范圍.
解答 解:∵在平面直角坐標(biāo)系中,A(1,0),B(0,-1),
P是曲線y=$\sqrt{1-{x}^{2}}$上一個(gè)動(dòng)點(diǎn),
∴設(shè)P(cosα,sinα),α∈[0,π],
∴$\overrightarrow{BA}$=(1,1),$\overrightarrow{BP}$=(cosα,sinα+1),
$\overrightarrow{BP}•\overrightarrow{BA}$=cosα+sinα+1=$\sqrt{2}sin(α+\frac{π}{4})+1$,
∴$\overrightarrow{BP}$•$\overrightarrow{BA}$的取值范圍是[0,1+$\sqrt{2}$].
故答案為:[0,1+$\sqrt{2}$].
點(diǎn)評(píng) 本題考查向量的數(shù)量積的取值范圍的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意平面向量數(shù)量積的性質(zhì)的合理運(yùn)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 18個(gè) | B. | 16個(gè) | C. | 14個(gè) | D. | 12個(gè) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{4{C}_{13}^{2}}{{C}_{52}^{2}}$ | B. | $\frac{{C}_{13}^{2}}{{C}_{52}^{2}}$ | C. | $\frac{2}{52}$ | D. | $\frac{13}{52}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-∞,$\frac{1}{2}$) | B. | (-∞,$\frac{1}{2}$)∪($\frac{3}{2}$,+∞) | C. | ($\frac{1}{2}$,$\frac{3}{2}$) | D. | ($\frac{3}{2}$,+∞) |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com