精英家教網 > 高中數學 > 題目詳情

【題目】已知定點S( -20) ,T(2,0),動點P為平面上一個動點,且直線SPTP的斜率之積為.

1)求動點P的軌跡E的方程;

2)設點B為軌跡Ey軸正半軸的交點,是否存在直線l,使得l交軌跡EMN兩點,且F(1,0)恰是△BMN的垂心?若存在,求l的方程;若不存在,說明理由.

【答案】1;(2)存在,.

【解析】

1)設,由結合兩點間斜率計算公式,整理化簡即可;

2)根據題意,設直線的方程為,,因為,所以,結合直線和橢圓聯立的方程組,求出的值,根據題意,確定出即可得出結果.

1)設,由已知有

整理得動點P的軌跡E的方程為

2)由(1)知,的方程為,所以

,所以直線的斜率,

假設存在直線,使得的垂心,則.

設的斜率為,則,所以.

設的方程為.

,得,

,得,

.

因為,所以,因為,

所以,

,

整理得,

所以,

整理得,解得,

時,直線過點,不能構成三角形,舍去;

時,滿足,

所以存在直線:,使得的垂心.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】用數學歸納法證明:

1

2;

3)設,證明:;

413的倍數

5,證明能被整除.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某航運公司用300萬元買回客船一艘,此船投入營運后,毎月需開支燃油費、維修費、員工工資,已知每月燃油費7000元,第個月的維修費和工資支出為.

1)設月平均消耗為元,求(月)的函數關系;

2)投入營運第幾個月,成本最低?(月平均消耗最小)

3)若第一年純收入50萬元(已扣除消耗),以后每年純收入以5%遞減,則多少年后可收回成本?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知數列{an}的前n項和為Sn,且Snn5an85,nN*

1)證明:{an1}是等比數列;

2)求數列{Sn}的通項公式.請指出n為何值時,Sn取得最小值,并說明理由?(參考數據15=﹣14.85

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知拋物線的頂點為平面直角坐標系的坐標原點,焦點為圓的圓心.經過點的直線交拋物線兩點,交圓兩點,在第一象限,在第四象限.

(1)求拋物線的方程;

(2)是否存在直線使的等差中項?若存在,求直線的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某校舉行了全體學生的一分鐘跳繩比賽,為了了解學生的體質,隨機抽取了100名學生,其跳繩個數的頻數分布表如下:

一分鐘跳繩個數

頻數

6

12

18

30

16

10

8

1)若將抽取的100名學生一分鐘跳繩個數作為一個樣本,請將這100名學生一分鐘跳繩個數的頻率分布直方圖補充完整(只畫圖,不需要寫出計算過程);

2)若該校共有3000名學生,所有學生的一分鐘跳繩個數X近似服從正態(tài)分布,其中為樣本平均數的估計值(同一組中的數據用該組區(qū)間的中點值為代表).利用所得正態(tài)分布模型,解決以下問題:

①估計該校一分鐘跳繩個數超過165個的人數(結果四舍五入到整數);

②若在該校所有學生中任意抽取4人,設一分鐘跳繩個數超過180個的人數為,求隨機變量的分布列、期望與方差./span>

附:若隨機變量Z服從正態(tài)分布,則,,.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】中,邊,,分別是角,的對邊,已知.

1)建立適當的直角坐標系,求的內切圓方程;

2為內切圓上任意一點,求的最大值與最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知拋物線Ey22pxp0)的焦點為F,以F為圓心,3p為半徑的圓交拋物線EP,Q兩點,以線段PF為直徑的圓經過點(0,﹣1),則點F到直線PQ的距離為_____

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知,請說明函數的圖象是由經過怎樣的變換得到?

查看答案和解析>>

同步練習冊答案