函數(shù)f(x)=
|lnx|,x>0
ex,x≤0
(e為自然對數(shù)的底數(shù)),已知函數(shù)g(x)=f(x)-m有兩個零點,則實數(shù)m的取值范圍為( 。
A、0<m<1B、0<m≤1
C、m>1D、m≥1
考點:函數(shù)的零點與方程根的關系
專題:函數(shù)的性質(zhì)及應用
分析:問題等價于y=f(x)的圖象與y=m的圖象有兩個交點,作圖可得.
解答: 解:函數(shù)g(x)=f(x)-m有兩個零點
等價于y=f(x)的圖象與y=m的圖象有兩個交點,
由圖象可知:m>1
故選:C
點評:本題考查函數(shù)的零點,轉(zhuǎn)化和數(shù)形結合是解決問題的關鍵,屬基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

集合A={x|x2-5x≤0},B={x|x2-4x>0},求A∩B、A∪B、∁RB.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=ax2-4x+2,函數(shù)g(x)=(
1
3
f(x)
(1)若f(2-x)=f(2+x),求f(x)的解析式;
(2)若g(x)有最大值9,求a的值,并求出g(x)的值域;
(3)已知a≤1,若函數(shù)y=f(x)-log2
x
8
在區(qū)間[1,2]內(nèi)有且只有一個零點,試確定實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

曲線y=e-5x+2在點(0,3)處的切線方程為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
kx2+x,x≤0
f(x-5),x>0
,
(1)若函數(shù)y=f(x)的圖象經(jīng)過點(-1,4),分別求k,f(14)的值;
(2)當k<0時,用定義法證明:f(x)在(-∞,0)上為增函數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

記(1+3x)n的展開式中各項系數(shù)和為an,各項的二項式系數(shù)和為bn,則
lim
n→∞
2bn-an
3bn+an
等于( 。
A、1B、0C、-1D、不存在

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,AB、AC邊的長分別是2和1,∠A=60°,若AD平分∠BAC交BC于D,則
AD
BD
=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,若|
AB
|=2,|
AC
|=3,
AB
AC
=-3,則△ABC的面積S等于( 。
A、3
B、
3
C、
3
2
D、
3
3
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x2-2x(x∈[a,b]) 的值域為[-1,3],當a=-1時,b的取值范圍是
 

查看答案和解析>>

同步練習冊答案