等比數(shù)列{an}的各項均為正數(shù),且3a1+2a2=16,a32=4a2a6
(I)求數(shù)列{an}的通項公式;
(Ⅱ)設(shè)數(shù)列{bn}滿足條件:2bn=[1-(-1)n]an,求數(shù)列{bn}的前2n項和S2n
考點:數(shù)列的求和,等比數(shù)列的性質(zhì)
專題:等差數(shù)列與等比數(shù)列
分析:(I)設(shè)等比數(shù)列{an}的公比為q>0,由于a32=4a2a6=4
a
2
4
,可得q=
a4
a3
=
1
2
.又3a1+2a2=16,解得a1=4.即可得出an
(II)由于2bn=[1-(-1)n]an,可得bn=
1-(-1)n
2
an
=
0,n為偶數(shù)
an,n為奇數(shù)
.因此S2n=a1+a3+…+a2n-1,利用等比數(shù)列的前n項和公式即可得出.
解答: 解:(I)設(shè)等比數(shù)列{an}的公比為q>0,
∵a32=4a2a6=4
a
2
4
,
q=
a4
a3
=
1
2

又3a1+2a2=16,
∴3a1+2a1q=16,解得a1=4.
∴an=4×(
1
2
)n-1
=(
1
2
)n-3

(II)∵2bn=[1-(-1)n]an
bn=
1-(-1)n
2
an
=
0,n為偶數(shù)
an,n為奇數(shù)

∴S2n=a1+a3+…+a2n-1
=(
1
2
)-2+(
1
2
)0
+…+(
1
2
)2n-4

=
4×[1-(
1
4
)n]
1-
1
4
=
16
3
[1-(
1
4
)n]
點評:本題考查了等比數(shù)列的通項公式及其前n項和公式、分類討論思想方法,考查了推理能力與計算能力,屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

甲乙兩班進行一門課程的考試,按照學生考試成績的優(yōu)秀和不優(yōu)秀統(tǒng)計后得到如列聯(lián)表:
(1)據(jù)此數(shù)據(jù)有多大的把握認為學生成績優(yōu)秀與班級有關(guān)?
(2)用分層抽樣的方法在成績優(yōu)秀的學生中隨機抽取5名學生,問甲、乙兩班各應抽取多少人?
(3)在(2)中抽取的5名學生中隨機選取2名學生介紹學習經(jīng)驗,求至少有一人來自乙班的概率.(k2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d)
優(yōu)秀不優(yōu)秀總計
甲班153550
乙班104050
總計2575100
P(k2>k)0.500.400.250.150.100.050.0250.0100.0050.001
k0.4550.7081.3232.0722.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,滿足AB⊥AC,AB=AC=2.若一個橢圓恰好以C為一個焦點,另一個焦點在線段AB上,且A,B均在此橢圓上,則該橢圓的離心率為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)函數(shù)f(x)=sinxcosx-
3
cos(π+x)cosx(x∈R).
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)若函數(shù)y=f(x0的圖象按b=(
π
4
3
2
)平移后得到函數(shù)y=g(x)的圖象,求y=g(x)在(0,
π
4
]上的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)t為實數(shù),|
e1
|=2,|
e2
|=1,
e1
e2
的夾角為
π
3
,若向量2t
e1
+7
e2
與向量
e1
+t
e2
的夾角為鈍角,則實數(shù)t的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,由曲線y=sinx,直線x=
3
2
π與x軸圍成的陰影部分的面積是( 。
A、1
B、2
C、2
2
D、3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x2+2|x|-8,定義域為[a,b](a,b∈Z),值域為[-8,0],則滿足條件的整數(shù)對(a,b)有
 
對.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

為了估計魚塘中魚的尾數(shù),先從魚塘中捕出2000尾魚,并給每條尾魚做上標記(不影響存活),然后放回魚塘,經(jīng)過適當?shù)臅r機,再從魚塘中捕出600尾魚,其中有標記的魚為40尾,根據(jù)上述數(shù)據(jù)估計該魚塘中魚的尾數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=ln(
1+x2
-x)+2,則f(lg3)+f(lg
1
3
)=
 

查看答案和解析>>

同步練習冊答案