【題目】已知橢圓C:mx2+3my2=1(m>0)的長(zhǎng)軸長(zhǎng)為 ,O為坐標(biāo)原點(diǎn).
(1)求橢圓C的方程和離心率.
(2)設(shè)點(diǎn)A(3,0),動(dòng)點(diǎn)B在y軸上,動(dòng)點(diǎn)P在橢圓C上,且點(diǎn)P在y軸的右側(cè).若BA=BP,求四邊形OPAB面積的最小值.
【答案】
(1)
解:由題意知橢圓C: ,
所以 , ,
故 ,解得 ,
所以橢圓C的方程為 .
因?yàn)? ,所以離心率
(2)
解:設(shè)線(xiàn)段AP的中點(diǎn)為D.
因?yàn)锽A=BP,所以BD⊥AP.
由題意知直線(xiàn)BD的斜率存在,
設(shè)點(diǎn)P的坐標(biāo)為(x0,y0)(y0≠0),
則點(diǎn)D的坐標(biāo)為 ,直線(xiàn)AP的斜率 ,
所以直線(xiàn)BD的斜率 ,
故直線(xiàn)BD的方程為 .
令x=0,得 ,故 .
由 ,得 ,化簡(jiǎn)得 .
因此,S四邊形OPAB=S△OAP+S△OAB=
= = = .
當(dāng)且僅當(dāng) 時(shí),即 時(shí)等號(hào)成立.
故四邊形OPAB面積的最小值為
【解析】(1)將橢圓方程化為標(biāo)準(zhǔn)方程,由題意可得a,可得b,即可得到橢圓方程,再由離心率公式計(jì)算即可得到所求值;(2)設(shè)AP中點(diǎn)為D,由|BA|=||BP|,所以BD⊥AP,求得AP的斜率,進(jìn)而得到BD的斜率和中點(diǎn),可得直線(xiàn)BD的方程,即有B的坐標(biāo),求得四邊形OPAB的面積為S=S△OAP+S△OMB , 化簡(jiǎn)整理,運(yùn)用基本不等式即可得到最小值.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用橢圓的標(biāo)準(zhǔn)方程的相關(guān)知識(shí)可以得到問(wèn)題的答案,需要掌握橢圓標(biāo)準(zhǔn)方程焦點(diǎn)在x軸:,焦點(diǎn)在y軸:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-5:不等式選講
已知不等式|x+3|﹣2x﹣1<0的解集為(x0 , +∞)
(Ⅰ)求x0的值;
(Ⅱ)若函數(shù)f(x)=|x﹣m|+|x+ |﹣x0(m>0)有零點(diǎn),求實(shí)數(shù)m的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓M過(guò)C(1,-1),D(-1,1)兩點(diǎn),且圓心M在x+y-2=0上.
(1)求圓M的方程;
(2)設(shè)點(diǎn)P是直線(xiàn)3x+4y+8=0上的動(dòng)點(diǎn),PA,PB是圓M的兩條切線(xiàn),A,B為切點(diǎn),求四邊形PAMB面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】橢圓C:的離心率為,其右焦點(diǎn)到橢圓C外一點(diǎn)的距離為,不過(guò)原點(diǎn)O的直線(xiàn)l與橢圓C相交于A,B兩點(diǎn),且線(xiàn)段AB的長(zhǎng)度為2.
1求橢圓C的方程;
2求面積S的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列命題中是錯(cuò)誤命題的個(gè)數(shù)有( )
(1)若命題p為假命題,命題為假命題,則命題“”為假命題;
(2)命題“若,則或”的否命題為“若,則或”;
(3)對(duì)立事件一定是互斥事件;
(4)為兩個(gè)事件,則P(A∪B)=P(A)+P(B);
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn , 通項(xiàng)公式為 .
(Ⅰ)計(jì)算f(1),f(2),f(3)的值;
(Ⅱ)比較f(n)與1的大小,并用數(shù)學(xué)歸納法證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】以下莖葉圖記錄了甲、乙兩組各四名同學(xué)的植樹(shù)棵數(shù)。乙組記錄中有一個(gè)數(shù)據(jù)模糊,無(wú)法確認(rèn),在圖中經(jīng)X表示。
(1)如果X=8,求乙組同學(xué)植樹(shù)棵數(shù)的平均數(shù)和方差
(2)如果X=9,分別從甲、乙兩組中隨機(jī)選取一名同學(xué),求這兩名同學(xué)的植樹(shù)總棵數(shù)為19的概率
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓C的圓心坐標(biāo)且與線(xiàn)y=3x+4相切,
(1)求圓C的方程;
(2)設(shè)直線(xiàn)與圓C交于M,N兩點(diǎn),那么以MN為直徑的圓能否經(jīng)過(guò)原點(diǎn),若能,請(qǐng)求出直線(xiàn)MN的方程;若不能,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),其中.
Ⅰ當(dāng)時(shí),求曲線(xiàn)在點(diǎn)處的切線(xiàn)方程;
Ⅱ當(dāng)時(shí),若在區(qū)間上的最小值為,求a的取值范圍;
Ⅲ若,,且,恒成立,求a的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com