【題目】已知函數(shù),其中.
Ⅰ當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;
Ⅱ當(dāng)時(shí),若在區(qū)間上的最小值為,求a的取值范圍;
Ⅲ若,,且,恒成立,求a的取值范圍.
【答案】(I);(II);(III).
【解析】
Ⅰ 求出,由的值可得切點(diǎn)坐標(biāo),求出的值,可得切線斜率,利用點(diǎn)斜式可得曲線在點(diǎn)處的切線方程;Ⅱ確定函數(shù)的定義域,求導(dǎo)函數(shù),分類討論,利用導(dǎo)數(shù)確定函數(shù)的單調(diào)性,利用單調(diào)性求得函數(shù)在區(qū)間上的最小值為,即可求的取值范圍;Ⅲ設(shè),則,對(duì)任意,,,且恒成立,等價(jià)于在上單調(diào)遞增,由此可求的取值范圍.
Ⅰ當(dāng)時(shí),,
因?yàn)?/span>,,所以切線方程為
Ⅱ函數(shù)的定義域?yàn)?/span>.
當(dāng)時(shí),,
令,即,所以或
當(dāng),即時(shí),在上單調(diào)遞增,
所以在上的最小值是;
當(dāng)時(shí),在上的最小值是,不合題意;
當(dāng)時(shí),在上單調(diào)遞減,
所以在上的最小值是,不合題意
綜上可得
Ⅲ設(shè),則,對(duì)任意,,,且恒成立,等價(jià)于在上單調(diào)遞增.
而,
當(dāng)時(shí),,此時(shí)在單調(diào)遞增;
當(dāng)時(shí),只需在恒成立,因?yàn)?/span>,只要,則需要,
對(duì)于函數(shù),過定點(diǎn),對(duì)稱軸,只需,即
綜上可得
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:mx2+3my2=1(m>0)的長(zhǎng)軸長(zhǎng)為 ,O為坐標(biāo)原點(diǎn).
(1)求橢圓C的方程和離心率.
(2)設(shè)點(diǎn)A(3,0),動(dòng)點(diǎn)B在y軸上,動(dòng)點(diǎn)P在橢圓C上,且點(diǎn)P在y軸的右側(cè).若BA=BP,求四邊形OPAB面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的對(duì)稱軸為坐標(biāo)軸,頂點(diǎn)是坐標(biāo)原點(diǎn),準(zhǔn)線方程為x=﹣1,直線l與拋物線相交于不同的A,B兩點(diǎn).
(1)求拋物線的標(biāo)準(zhǔn)方程;
(2)如果直線l過拋物線的焦點(diǎn),求 的值;
(3)如果 ,直線l是否過一定點(diǎn),若過一定點(diǎn),求出該定點(diǎn);若不過一定點(diǎn),試說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),若是函數(shù)的唯一極值點(diǎn),則實(shí)數(shù)的取值范圍是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓 的離心率為 ,且過點(diǎn) .若點(diǎn)M(x0 , y0)在橢圓C上,則點(diǎn) 稱為點(diǎn)M的一個(gè)“橢點(diǎn)”.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若直線l:y=kx+m與橢圓C相交于A,B兩點(diǎn),且A,B兩點(diǎn)的“橢點(diǎn)”分別為P,Q,以PQ為直徑的圓經(jīng)過坐標(biāo)原點(diǎn),試求△AOB的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知P是直線上的一個(gè)動(dòng)點(diǎn),圓Q的方程為:設(shè)以線段PQ為直徑的圓E與圓Q交于C,D兩點(diǎn).
證明:PC,PD均與圓Q相切;
當(dāng)時(shí),求點(diǎn)P的坐標(biāo);
求線段CD長(zhǎng)度的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知公比不等于1的等比數(shù)列{an},滿足:a3=3,S3=9,其中Sn為數(shù)列{an}的前n項(xiàng)和.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=log2 , 若cn= , 求數(shù)列{cn}的前n項(xiàng)和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,角A,B,C所對(duì)的邊長(zhǎng)分別為a,b,c,且cos = .
(1)若a=3,b= ,求c的值;
(2)若f(A)=sin ( cos ﹣sin )+ ,求f(A)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,圓C的方程為x2+y2-4x=0.若直線y=k(x+1)上存在一點(diǎn)P,使過P所作的圓的兩條切線相互垂直,則實(shí)數(shù)k的取值范圍是( )
A. (-∞,-2) B. [-2,2]
C. [-,] D. (-∞,-2]∪[2,+∞)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com