【題目】在△ABC中,角A,B,C所對的邊長分別為a,b,c,且cos =
(1)若a=3,b= ,求c的值;
(2)若f(A)=sin cos ﹣sin )+ ,求f(A)的取值范圍.

【答案】
(1)解:在△ABC中,A+C=π﹣B,

∴cos =cos =sin =

= ,即B=

由余弦定理:b2=a2+c2﹣2accosB,得c2﹣3c+2=0,

解得:c=1或c=2


(2)解:f(A)= sinA﹣ + = sinA+ cosA=sin(A+ ),

由(1)A+C=π﹣B= ,得到A∈(0, ),

∴A+ ∈( , ),

∴sin(A+ )∈( ,1],

則f(A)的范圍是( ,1]


【解析】(1)由三角形內(nèi)角和定理表示出 ,利用誘導(dǎo)公式化簡求出B的度數(shù),再利用余弦定理求出c的值即可;(2)f(A)解析式利用二倍角的正弦、余弦函數(shù)公式化簡,再利用兩角和與差的正弦函數(shù)公式化為一個角的三角函數(shù),由A的范圍求出f(A)的范圍即可.
【考點精析】本題主要考查了余弦定理的定義的相關(guān)知識點,需要掌握余弦定理:;;才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓C的圓心坐標且與線y=3x+4相切

(1)求圓C的方程;

(2)設(shè)直線與圓C交于MN兩點,那么以MN為直徑的圓能否經(jīng)過原點,若能,請求出直線MN的方程;若不能,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中

當(dāng)時,求曲線在點處的切線方程;

當(dāng)時,若在區(qū)間上的最小值為,求a的取值范圍;

,,且恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C:(a>0,b>0)的短軸長為2 , 且離心率e=
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)F1、F2是橢圓的左、右焦點,過F2的直線與橢圓相交于P、Q兩點,求△F1PQ面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】當(dāng)向量 = =(﹣2,2), =(1,0)時,執(zhí)行如圖所示的程序框圖,輸出的i值為(
A.5
B.4
C.3
D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 (a>b>0)的一個頂點為B(0,4),離心率e= ,直線l交橢圓于M,N兩點.
(1)若直線l的方程為y=x﹣4,求弦MN的長;
(2)如果△BMN的重心恰好為橢圓的右焦點F,求直線l方程的一般式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線l經(jīng)過拋物線y2=6x的焦點F,且與拋物線相交于A,B兩點.

(1)若直線l的傾斜角為60°,求|AB|的值;

(2)|AB|=9,求線段AB的中點M到準線的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x2﹣alnx(a∈R).
(1)若曲線f(x)在(1,f(1))處的切線與直線y=﹣x+5垂直,求實數(shù)a的值.
(2)x0∈[1,e],使得 ≤0成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義在R上的函數(shù)f(x)滿足:f′(x)﹣f(x)=xex , 且f(0)= ,則 的最大值為(
A.0
B.
C.1
D.2

查看答案和解析>>

同步練習(xí)冊答案