12.若關(guān)于x的不等式ax<b的解集為(-2,+∞),則關(guān)于的不等式ax2+bx-3a>0的解集為( 。
A.(-∞,-3)∪(-1,+∞)B.(-∞,-1)∪(3,+∞)C.(-3,1)D.(-1,3)

分析 由關(guān)于x的不等式ax<b的解集為(-2,+∞),確定a,b的關(guān)系以及a的正負(fù),即可求解不等式ax2+bx-3a>0的解集.

解答 解:由關(guān)于x的不等式ax<b的解集為(-2,+∞),
∴a<0,且$\frac{a}=-2$,即b=-2a.
那么:不等式ax2+bx-3a>0轉(zhuǎn)化為ax2-2ax-3a>0.
∵a<0,
∴x2-2x-3<0.
解得:-1<x<3.
故選:D.

點(diǎn)評(píng) 本題考查不等式的解法,需要對(duì)確定a,b的關(guān)系以及a的正負(fù)的考慮,考查運(yùn)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.設(shè)P:方程$\frac{{x}^{2}}{2m-1}$+$\frac{{y}^{2}}{m+2}$=1表示雙曲線;q:函數(shù)g(x)=x3+mx2+(m+$\frac{4}{3}$x)+6,在R上有極值點(diǎn),求使“p且q”為真命題的實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.?dāng)?shù)列{an}中,a7=10,an+1=2an+2,則a3的值為( 。
A.4B.1C.-$\frac{1}{2}$D.-$\frac{5}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知a是函數(shù)f(x)的一個(gè)零點(diǎn),且x1<a<x2,則( 。
A.f(x1)f(x2)>0B.f(x1)f(x2)<0
C.f(x1)f(x2)≥0D.以上答案均有可能

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.若等差數(shù)列{an}中,a8-$\frac{1}{2}{a_{11}}$=6,則數(shù)列{an}的前9項(xiàng)和S9=108.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.已知向量$\overrightarrow{a}$=(2,1),$\overrightarrow$=(x,2),若$\overrightarrow{a}$∥$\overrightarrow$,則x=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.在△ABC中,已知其面積為S=a2-(b-c)2,則cosA=(  )
A.$\frac{3}{4}$B.$\frac{13}{15}$C.$\frac{15}{17}$D.$\frac{17}{19}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.設(shè)U=R,A={x|-2<x<3},B={x|-1≤x≤4},則求A∩B,∁UA∪B,∁UB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.${∫}_{1}^{2}$$\frac{1}{x}$dx=( 。
A.ln2B.2ln2C.-ln2D.0

查看答案和解析>>

同步練習(xí)冊(cè)答案