7.若離散型隨機(jī)變量X的分布列函數(shù)為P(X=k)=$\frac{k}{10}$,k=1,2,3,4,則P(X>1)=( 。
A.$\frac{1}{10}$B.$\frac{3}{10}$C.$\frac{7}{10}$D.$\frac{9}{10}$

分析 利用分布列,直接求解P(X>1)即可.

解答 解:離散型隨機(jī)變量X的分布列函數(shù)為P(X=k)=$\frac{k}{10}$,k=1,2,3,4,
則P(X>1)=P(X=2)+P(X=3)+P(X=4)=$\frac{2}{10}$+$\frac{3}{10}$$+\frac{4}{10}$=$\frac{9}{10}$.
故選:D.

點(diǎn)評(píng) 本題考查離散型隨機(jī)變量X的分布列,互斥事件概率的求法,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知:直線l的方程為3x+4y-12=0,求滿(mǎn)足下列條件的直線l′的方程.
(1)l′與l平行,且l′與l間的距離等于5;
(2)l′與l垂直且l′與兩坐標(biāo)軸圍成的三角形面積為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.過(guò)點(diǎn)A(1,0)和B(2,1)的直線的傾斜角為( 。
A.30°B.45°C.135°D.150°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.某籃球運(yùn)動(dòng)員在上賽季的三分球命中率為25%,場(chǎng)均三分球出手10次,教練建議他在新賽季減少三分球出手次數(shù),若在新賽季的第一場(chǎng)比賽中該球員計(jì)劃出手3次,每次出手均相互獨(dú)立,設(shè)其命中X次.
(1)若將頻率視為概率,求X的分布列;
(2)請(qǐng)給該隊(duì)員一些建議,如何才能提高他在一場(chǎng)比賽中的三分球得分的期望?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.某畢業(yè)生參加人才招聘會(huì),分別向甲、乙、丙三個(gè)公司投遞了個(gè)人簡(jiǎn)歷,假定該畢業(yè)生得到甲公司面試的概率為$\frac{2}{3}$,得到乙、丙兩公司面試的概率均為p,且三個(gè)公司是否讓其面試是相互獨(dú)立的.記X為該畢業(yè)生得到面試的公司個(gè)數(shù).若P(X=0)=$\frac{1}{12}$,P(X=2)=$\frac{5}{12}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.(1)若函數(shù)f(x)=lnx-ax有極值,則函數(shù)f(x)的單調(diào)遞增區(qū)間是(0,$\frac{1}{a}$);
(2)若函數(shù)g(x)=xlnx-$\frac{1}{2}$ax2-x有極值,則實(shí)數(shù)a的取值范圍是(-∞,$\frac{1}{e}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知AB是經(jīng)過(guò)拋物線y2=2px的焦點(diǎn)的弦,若點(diǎn)A、B的橫坐標(biāo)分別為1和$\frac{1}{4}$,則該拋物線的準(zhǔn)線方程為(  )
A.x=1B.x=-1C.x=$\frac{1}{2}$D.x=-$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知函數(shù)f(x)=ex-2x.
(1)求函數(shù)f(x)的極值;
(2)證明:當(dāng)x>0時(shí),曲線y=x2恒在曲線y=ex的下方;
(3)討論函數(shù)g(x)=x2-aex(a∈R)零點(diǎn)的個(gè)數(shù).
參考公式:alogaN=N(a>0,a≠1,N>0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.若冪函數(shù)f(x)=xm+1在區(qū)間(0,+∞)是單調(diào)減函數(shù),則實(shí)數(shù)m的取值范圍是(-∞,-1).

查看答案和解析>>

同步練習(xí)冊(cè)答案