18.已知函數(shù)f(x)=|x+2|+|x-3|.
(Ⅰ)求不等式f(x)<6的解集;
(Ⅱ)若關(guān)于的不等式f(x)≥|2a+1|恒成立,求實(shí)數(shù)的取值范圍.

分析 (Ⅰ)通過(guò)討論x的范圍,求出不等式的解集即可;(Ⅱ)求出f(x)的最小值,得到關(guān)于a的不等式,解出即可.

解答 解:(Ⅰ)不等式f(x)<6,即|x+2|+|x-3|<6,可化為
①$\left\{\begin{array}{l}{x≤-2}\\{-({x+2})-({x-3})<6}\end{array}$或②$\left\{\begin{array}{l}{-2<x<3}\\{({x+2})-({x-3})<6}\end{array}$或③$\left\{\begin{array}{l}{x≥3}\\{({x+2})+({x-3})<6}\end{array}$
解①得$-\frac{5}{2}<x≤-2$,解②得-2<x<3,解③得$3≤x<\frac{7}{2}$,
綜合得$-\frac{5}{2}<x<\frac{7}{2}$,即原不等式的解集為$\{x|-\frac{5}{2}<x<\frac{7}{2}\}$.       …6分
(Ⅱ)因?yàn)閒(x)=|x+2|+|x-3|≥|(x+2)-(x-3)|=5,
當(dāng)且僅當(dāng)-2≤x≤3時(shí),等號(hào)成立,即f(x)min=5,
又關(guān)于的不等式f(x)≥|2a+1|恒成立,則|2a+1|≤5,
解得-3≤a≤2,即實(shí)數(shù)的取值范圍為[-3,2].…12分.

點(diǎn)評(píng) 本題考查了解絕對(duì)值不等式問(wèn)題,考查分類(lèi)討論思想,轉(zhuǎn)化思想,是一道中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知實(shí)數(shù)x,y滿(mǎn)足$\left\{\begin{array}{l}{2x+y≤2}\\{x≥0}\\{x+y≥0}\end{array}\right.$,z=(x+1)2+(y+2)2,則z的最小值為(  )
A.$\frac{3\sqrt{2}}{2}$B.$\frac{9}{2}$C.$\sqrt{5}$D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.用反證法證明命題:“三角形三個(gè)內(nèi)角至少有一個(gè)不大于60°”時(shí),應(yīng)假設(shè)( 。
A.三個(gè)內(nèi)角都不大于 60°B.三個(gè)內(nèi)角至多有一個(gè)大于 60°
C.三個(gè)內(nèi)角都大于60°D.三個(gè)內(nèi)角至多有兩個(gè)大于 60°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.過(guò)點(diǎn)(1,0)且與直線y=$\frac{1}{2}$x-1平行的直線方程是(  )
A.x-2y-1=0B.x-2y+1=0C.2x+y-2=0D.x+2y-1=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c.已知C=45°,b=$\sqrt{2}$,c=2,則A=105°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.某校一個(gè)校園景觀的主題為“托起明天的太陽(yáng)”,其主體是一個(gè)半徑為5米的球體,需設(shè)計(jì)一個(gè)透明的支撐物將其托起,該支撐物為等邊圓柱形的側(cè)面,厚度忽略不計(jì).軸截面如圖所示,設(shè)∠OAB=α.(注:底面直徑和高相等的圓柱叫做等邊圓柱.)
(1)用α表示圓柱的高;
(2)實(shí)踐表明,當(dāng)球心O和圓柱底面圓周上的點(diǎn)D的距離達(dá)到最大時(shí),景觀的觀賞效果最佳,試求出OD最大值,并求出此時(shí)α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知函數(shù)f(x)=|2x-a|+|2x-1|.
(1)當(dāng)a=3時(shí),求關(guān)于x的不等式f(x)≤6的解集;
(2)當(dāng)x∈R時(shí),求實(shí)數(shù)f(x)≥a2-a-13的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.y=$\sqrt{lo{g}_{\frac{1}{2}}(3x-2)}$的定義域是($\frac{2}{3},1$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.在△ABC中,a=7,b=4$\sqrt{3},c=\sqrt{13}$,則△ABC的最小角為$\frac{π}{6}$弧度.

查看答案和解析>>

同步練習(xí)冊(cè)答案