17.交強(qiáng)險是車主必須為機(jī)動車購買的險種.若普通6座以下私家車投保交強(qiáng)險第一年的費(fèi)用(基準(zhǔn)保費(fèi))統(tǒng)一為a元,在下一年續(xù)保時,實(shí)行的是費(fèi)率浮動機(jī)制,保費(fèi)與上一年度車輛發(fā)生道路交通事故的情況相聯(lián)系,發(fā)生交通事故的次數(shù)越多,費(fèi)率也就越高,具體浮動情況如表:
 交強(qiáng)險浮動因素和浮動費(fèi)率比率表
  浮動因素浮動比率 
 A1 上一個年度未發(fā)生有責(zé)任道路交通事故 下浮10%
 A2 上兩個年度未發(fā)生有責(zé)任道路交通事故 下浮20%
 A3 上三個及以上年度未發(fā)生有責(zé)任道路交通事故 下浮30%
 A4 上一個年度發(fā)生一次有責(zé)任不涉及死亡的道路交通事故 0%
 A5 上一個年度發(fā)生兩次及兩次以上有責(zé)任道路交通事故 上浮10%
 A6 上一個年度發(fā)生有責(zé)任道路交通死亡事故 上浮30%
某機(jī)構(gòu)為了研究某一品牌普通6座以下私家車的投保情況,隨機(jī)抽取了60輛車齡已滿三年的該品牌同型號私家車的下一年續(xù)保時的情況,統(tǒng)計得到了下面的表格:
 類型 A1 A2 A3 A4 A5 A6
 數(shù)量10 20 15 
以這60輛該品牌車的投保類型的頻率代替一輛車投保類型的概率,完成下列問題:
(Ⅰ)按照我國《機(jī)動車交通事故責(zé)任強(qiáng)制保險條例》汽車交強(qiáng)險價格的規(guī)定a=950.記X為某同學(xué)家的一輛該品牌車在第四年續(xù)保時的費(fèi)用,求X的分布列與數(shù)學(xué)期望值;(數(shù)學(xué)期望值保留到個位數(shù)字)
(Ⅱ)某二手車銷售商專門銷售這一品牌的二手車,且將下一年的交強(qiáng)險保費(fèi)高于基本保費(fèi)的車輛記為事故車.假設(shè)購進(jìn)一輛事故車虧損5000元,一輛非事故車盈利10000元:
①若該銷售商購進(jìn)三輛(車齡已滿三年)該品牌二手車,求這三輛車中至多有一輛事故車的概率;
②若該銷售商一次購進(jìn)100輛(車齡已滿三年)該品牌二手車,求他獲得利潤的期望值.

分析 (Ⅰ)由題意可知X的可能取值為0.9a,0.8a,0.7a,a,1.1a,1.3a.由統(tǒng)計數(shù)據(jù)可知其概率及其分布列.
(II)①由統(tǒng)計數(shù)據(jù)可知任意一輛該品牌車齡已滿三年的二手車為事故車的概率為$\frac{1}{3}$,三輛車中至多有一輛事故車的概率為P=$(1-\frac{1}{3})^{3}$+${∁}_{3}^{1}×\frac{1}{3}×(\frac{2}{3})^{2}$.
②設(shè)Y為該銷售商購進(jìn)并銷售一輛二手車的利潤,Y的可能取值為-5000,10000.即可得出分布列與數(shù)學(xué)期望.

解答 解:(Ⅰ)由題意可知X的可能取值為0.9a,0.8a,0.7a,a,1.1a,1.3a.…(2分)
由統(tǒng)計數(shù)據(jù)可知:
P(X=0.9a)=$\frac{1}{6}$,P(X=0.8a)=$\frac{1}{12}$,P(X=0.7a)=$\frac{1}{12}$,P(X=a)=$\frac{1}{3}$,P(X=1.1a)=$\frac{1}{4}$,
P(X=1.3a)=$\frac{1}{12}$.
所以X的分布列為:

X0.9a0.8a0.7aa1.1a1.3a
P$\frac{1}{6}$$\frac{1}{12}$$\frac{1}{12}$$\frac{1}{3}$$\frac{1}{4}$$\frac{1}{12}$
…(4分)
所以EX=0.9a×$\frac{1}{6}$+0.8a×$\frac{1}{12}$+0.7a×$\frac{1}{12}$+a×$\frac{1}{3}$+1.1a×$\frac{1}{4}$+1.3a×$\frac{1}{12}$=$\frac{11.9a}{12}$=$\frac{11305}{12}$≈942.(5分)
(Ⅱ) ①由統(tǒng)計數(shù)據(jù)可知任意一輛該品牌車齡已滿三年的二手車為事故車的概率為$\frac{1}{3}$,三輛車中至多有一輛事故車的概率為P=$(1-\frac{1}{3})^{3}$+${∁}_{3}^{1}×\frac{1}{3}×(\frac{2}{3})^{2}$=$\frac{20}{27}$.…(8分)
②設(shè)Y為該銷售商購進(jìn)并銷售一輛二手車的利潤,Y的可能取值為-5000,10000.
所以Y的分布列為:
Y-500010000
P$\frac{1}{3}$$\frac{2}{3}$
所以EY=-5000×$\frac{1}{3}$+10000×$\frac{2}{3}$=5000.…(10分)
所以該銷售商一次購進(jìn)100輛該品牌車齡已滿三年的二手車獲得利潤的期望值為100EY=50萬元.…(12分)

點(diǎn)評 本題考查了隨機(jī)變量的分布列與數(shù)學(xué)期望、相互獨(dú)立與互斥事件的概率計算公式,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.定義在 R 上的奇函數(shù) f (x) 滿足 f (2+x )=f (2-x),且 f (1)=1,則 f (2017)=( 。
A.0B.1C.-1D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.在直角坐標(biāo)系中xOy中,已知曲線E經(jīng)過點(diǎn)P(1,$\frac{2\sqrt{3}}{3}$),其參數(shù)方程為$\left\{\begin{array}{l}{x=acosα}\\{y=\sqrt{2}sinα}\end{array}\right.$(α為參數(shù)),以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系.
(1)求曲線E的極坐標(biāo)方程;
(2)若直線l交E于點(diǎn)A、B,且OA⊥OB,求證:$\frac{1}{|OA{|}^{2}}$+$\frac{1}{|OB{|}^{2}}$為定值,并求出這個定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.如果兩組數(shù)a1,a2,…an和b1,b2,…bn的平均數(shù)分別是a和b,那么一組數(shù)a1+3b1,a2+3b2,…,an+3bn的平均數(shù)是a+3b.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.設(shè)U=R,A={-3,-2,-1,0,1,2},B={x|x≥1},則A∩∁UB=( 。
A.{1,2}B.{-1,0,1,2}C.{-3,-2,-1,0}D.{2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.為了了解一片經(jīng)濟(jì)林的生長情況,隨機(jī)抽測了其中60株樹木的底部周長(單位:cm),所得數(shù)據(jù)均在區(qū)間[80,130]上,其頻率分布直方圖如圖所示,則在抽測的60株樹木中,有42株樹木的底部周長小于110cm.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.設(shè)U=R,A={-2,-1,0,1,2},B={x|x≥1},則A∩∁UB=( 。
A.{1,2}B.{-1,0,1}C.{-2,-1,0}D.{-2,-1,0,1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.在△ABC中,D為BC邊上一點(diǎn),且滿足$\overrightarrow{AD}$=$\frac{1}{2}$($\overrightarrow{AB}$+$\overrightarrow{AC}$),BC=10,AD=12,且$\overrightarrow{AD}$•$\overrightarrow{BC}$=0,則$\overrightarrow{AD}$•$\overrightarrow{AC}$=( 。
A.144B.100C.169D.60

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知|$\overrightarrow{AB}$|=3,|$\overrightarrow{AC}$|=2$\sqrt{3}$,∠BAC=30°,且2$\overrightarrow{AC}$+3$\overrightarrow{DC}$=5$\overrightarrow{BC}$,則$\overrightarrow{AC}$•$\overrightarrow{CD}$等于( 。
A.-2B.3C.4D.-5

查看答案和解析>>

同步練習(xí)冊答案