【題目】某地區(qū)現(xiàn)有一個(gè)直角梯形水產(chǎn)養(yǎng)殖區(qū)ABCD,∠ABC=90°,AB∥CD,AB=800m,BC=1600m,CD=4000m,在點(diǎn)P處有一燈塔(如圖),且點(diǎn)P到BC,CD的距離都是1200m,現(xiàn)擬將養(yǎng)殖區(qū)ACD分成兩塊,經(jīng)過(guò)燈塔P增加一道分隔網(wǎng)EF,在△AEF內(nèi)試驗(yàn)養(yǎng)殖一種新的水產(chǎn)品,當(dāng)△AEF的面積最小時(shí),對(duì)原有水產(chǎn)品養(yǎng)殖的影響最。O(shè)AE=d.
(1)若P是EF的中點(diǎn),求d的值;
(2)求對(duì)原有水產(chǎn)品養(yǎng)殖的影響最小時(shí)的d的值,并求△AEF面積的最小值.
【答案】(1)480; (2)對(duì)原有水產(chǎn)品養(yǎng)殖的影響最小時(shí),d=480.△AEF面積的最小值為192000m2
【解析】
(1)建立平面坐標(biāo)系,求出直線(xiàn)AD,AC的方程,根據(jù)P為EF的中點(diǎn)列方程得出E點(diǎn)坐標(biāo),從而可計(jì)算d;
(2)根據(jù)基本不等式得出AEAF的最小值,進(jìn)而求出△AEF的面積最小值.
解:(1)以A為坐標(biāo)原點(diǎn),AB所在直線(xiàn)為x軸,建立如圖所示的平面直角坐標(biāo)系,
則C(800,1600),B(800,0),P(-400,400),D(-3200,1600).
AC所在直線(xiàn)方程為y=2x,AD所在直線(xiàn)方程為y=-x.
設(shè)E(-2m,m),F(n,2n),m>0,>0.
∵P是EF的中點(diǎn),∴,解得,
∴E(-960,480),
∴d=|AE|==480.
(2)∵EF經(jīng)過(guò)點(diǎn)P,∴kPE=kPF,
即=,化簡(jiǎn)得80m+240n=mn.
由基本不等式得:mn=80m+240n≥160,
即mn≥76800,當(dāng)且僅當(dāng)m=3n=480時(shí)等號(hào)成立.
∵kACkAD=-1,∴AC⊥AD,
∴S△AEF=AEAF=mn=mn≥76800=192000,
此時(shí)E(-960,480),d=AE=480.
故對(duì)原有水產(chǎn)品養(yǎng)殖的影響最小時(shí),d=480.△AEF面積的最小值為192000m2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù);
(1)當(dāng)時(shí),若,求的取值范圍;
(2)若定義在上的奇函數(shù)滿(mǎn)足,且當(dāng),,求在上的解析式;
(3)對(duì)于(2)中的,若關(guān)于的不等式在上恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,已知平面,且四邊形為直角梯形,,,.
(1)證明:;
(2)求平面與平面所成銳二面角的余弦值;
(3)點(diǎn)是線(xiàn)段上的動(dòng)點(diǎn),當(dāng)直線(xiàn)與所成的角最小時(shí),求線(xiàn)段的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=ax2+bx+c(a>0),且f(1).
(1)求證:函數(shù)f(x)有兩個(gè)不同的零點(diǎn);
(2)設(shè)x1,x2是函數(shù)f(x)的兩個(gè)不同的零點(diǎn),求|x1﹣x2|的取值范圍;
(3)求證:函數(shù)f(x)在區(qū)間(0,2)內(nèi)至少有一個(gè)零點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,函數(shù).
(1)當(dāng)時(shí),解不等式;
(2)若關(guān)于的方程有兩個(gè)不等的實(shí)數(shù)根,求的取值范圍;
(3)設(shè),若對(duì)任意,函數(shù)在區(qū)間上的最大值與最小值的差不超過(guò)1,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在數(shù)列{an}中,已知,且2an+1=an+1(n∈N*).
(1)求證:數(shù)列{an-1}是等比數(shù)列;
(2)若bn=nan,求數(shù)列{bn}的前n項(xiàng)和Tn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,直線(xiàn)分別交軸、軸的正半軸于、兩點(diǎn),為坐標(biāo)原點(diǎn).
(1)若直線(xiàn)方程為(),且,求的值;
(2)若直線(xiàn)經(jīng)過(guò)點(diǎn),設(shè)的斜率為,為線(xiàn)段的中點(diǎn),求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在銳角△ABC中,分別為A、B、C所對(duì)的邊,且
(1)確定角C的大;
(2)若c=,求△ABC周長(zhǎng)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在一個(gè)長(zhǎng)方體的容器中,里面裝有少量的水,現(xiàn)在將容器繞著其底部的一條棱傾斜.
(1)在傾斜的過(guò)程中,水面的形狀不斷變化,可能是矩形,也可能變成不是矩形的平行四邊形,對(duì)嗎?
(2)在傾斜的過(guò)程中,水的形狀也不斷變化,可以是棱柱,也可能變?yōu)槔馀_(tái)或棱錐,對(duì)嗎?
(3)如果傾斜時(shí),不是繞著底部的一條棱,而是繞著其底面的一個(gè)頂點(diǎn),上面的第(1)問(wèn)和第(2)問(wèn)對(duì)不對(duì)?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com