【題目】在銳角△ABC中,分別為A、B、C所對的邊,且
(1)確定角C的大;
(2)若c=,求△ABC周長的取值范圍.
【答案】(1)C=60°;(2)(+3,].
【解析】
(1)利用正弦定理化簡已知條件,求得的值,根據(jù)三角形是銳角三角形求得的大小.(2)利用正弦定理將轉(zhuǎn)化為角度來表示,求得三角形周長的表達(dá)式,利用三角函數(shù)求取值范圍的方法,求得三角形周長的取值范圍.
解:(1)已知a、b、c分別為A、B、C所對的邊,
由a=2csinA,
得sinA=2sinCsinA,又sinA≠0,則sinC=,
∴C=60°或C=120°,
∵△ABC為銳角三角形,∴C=120°舍去!C=60°
(2)∵c=,sinC=
∴由正弦定理得:,
即a=2sinA,b=2sinB,又A+B=π-C=,
即B=-A
∴a+b+c=2(sinA+sinB)+=2 [sinA+sin(-A)]+
=2(sinA+sincosA-cossinA)+
=2(sinAcos+cosAsin)+=2sin(A+)+,
∵△ABC是銳角三角形,
∴<A<,
∴<sin(A+)≤1,
則△ABC周長的取值范圍是(+3,].
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了了解學(xué)生的學(xué)習(xí)情況,一次測試中,科任老師從本班中抽取了n個(gè)學(xué)生的成績(滿分100分,且抽取的學(xué)生成績均在內(nèi))進(jìn)行統(tǒng)計(jì)分析.按照,,,,,的分組作出頻率分布直方圖和頻數(shù)分布表.
頻數(shù)分布表 | |
x | |
4 | |
10 | |
12 | |
8 | |
4 |
(1)求n,a,x的值;
(2)在選取的樣本中,從低于60分的學(xué)生中隨機(jī)抽取兩名學(xué)生,試問這兩名學(xué)生在同一組的概率是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,函數(shù)=.
(1)求的最大值:
(2)若關(guān)于的方程有實(shí)數(shù)解,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,以軸為始邊做兩個(gè)銳角,它們的終邊分別與單位圓相交于A,B兩點(diǎn),已知A,B的橫坐標(biāo)分別為
(1)求的值; (2)求的值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),判斷在上的單調(diào)性并證明;
(2)若對任意,不等式恒成立,求的取值范圍;
(3)討論函數(shù)的零點(diǎn)個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地區(qū)2008年至2016年糧食產(chǎn)量的部分?jǐn)?shù)據(jù)如下表:
(1)求該地區(qū)2008年至2016年的糧食年產(chǎn)量與年份之間的線性回歸方程;
(2)利用(1)中的回歸方程,分析2008年至2016年該地區(qū)糧食產(chǎn)量的變化情況,并預(yù)測該地區(qū) 2018年的糧食產(chǎn)量.
附:回歸直線的斜率和截距的最小二乘估計(jì)公式分別為,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),,
(1)當(dāng)時(shí),求的最大值和最小值;
(2)求實(shí)數(shù)的取值范圍,使在區(qū)間上是單調(diào)函數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)有如下性質(zhì):如果常數(shù),那么該函數(shù)在上是減函數(shù),在是增函數(shù),其圖像如圖所示.
(1)已知,,利用上述性質(zhì),求函數(shù)的單調(diào)區(qū)間和值域;
(2)對于(1)中的函數(shù)和函數(shù),若對任意,總存在,使得成立,求實(shí)數(shù)的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com