【題目】已知函數(shù).

1)當(dāng)時(shí),判斷上的單調(diào)性并證明;

2)若對(duì)任意,不等式恒成立,求的取值范圍;

3)討論函數(shù)的零點(diǎn)個(gè)數(shù).

【答案】(1) 上的單調(diào)遞減, 證明見(jiàn)解析 ;(2) ; (3) 見(jiàn)解析.

【解析】

(1) 當(dāng)時(shí),利用函數(shù)單調(diào)性的定義可判斷上的單調(diào)性,并用定義法證明.
(2)利用分離參數(shù)的方法將不等式恒成立,化為,然后求最值即可.
(3) 函數(shù)的零點(diǎn)個(gè)數(shù),即方程的實(shí)根的個(gè)數(shù),可數(shù)形結(jié)合分析得出答案.

(1) 當(dāng),時(shí), 單調(diào)遞減.

證明:任取

=

,有,

所以,即.

所以當(dāng)時(shí),上的單調(diào)遞減.

(2) 不等式恒成立,即

所以上恒成立.

(當(dāng) 時(shí)取得等號(hào)),所以.

(3)由,

所以 ,

設(shè)作出函數(shù)的圖象,如下.

由圖可知:當(dāng)時(shí),有1個(gè)零點(diǎn);

當(dāng)時(shí),有2個(gè)零點(diǎn);

當(dāng)時(shí),有3個(gè)零點(diǎn);

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知某單位甲、乙、丙三個(gè)部門(mén)共有員工60人,為調(diào)查他們的睡眠情況,通過(guò)分層抽樣獲得部分員工每天睡眠的時(shí)間,數(shù)據(jù)如下表(單位:小時(shí))

甲部門(mén)

6

7

8

乙部門(mén)

5.5

6

6.5

7

7.5

8

丙部門(mén)

5

5.5

6

6.5

7

8.5

(1)求該單位乙部門(mén)的員工人數(shù)?

(2)從甲部門(mén)和乙部門(mén)抽出的員工中,各隨機(jī)選取一人,甲部門(mén)選出的員工記為A,乙部門(mén)選出的員工記為B,假設(shè)所有員工睡眠的時(shí)間相互獨(dú)立,求A的睡眠時(shí)間不少于B的睡眠時(shí)間的概率;

(3)若將每天睡眠時(shí)間不少于7小時(shí)視為睡眠充足,現(xiàn)從丙部門(mén)抽出的員工中隨機(jī)抽取3人做進(jìn)一步的身體檢查.用X表示抽取的3人中睡眠充足的員工人數(shù),求隨機(jī)變量X的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校組織由5名學(xué)生參加的演講比賽,采用抽簽法決定演講順序,在“學(xué)生都不是第一個(gè)出場(chǎng),不是最后一個(gè)出場(chǎng)”的前提下,學(xué)生第一個(gè)出場(chǎng)的概率為

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn)在橢圓上.若點(diǎn),,且.

(1)求橢圓的離心率;

(2)設(shè)橢圓的焦距為4,,是橢圓上不同的兩點(diǎn),線段的垂直平分線為直線,且直線不與軸重合.

①若點(diǎn),直線過(guò)點(diǎn),求直線的方程;

② 若直線過(guò)點(diǎn),且與軸的交點(diǎn)為,求點(diǎn)橫坐標(biāo)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在銳角△ABC中,分別為A、BC所對(duì)的邊,且

(1)確定角C的大小;

(2)若c,求△ABC周長(zhǎng)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了響應(yīng)全民健身,加大國(guó)際體育文化的交流,蘭州市從2011年開(kāi)始舉辦“蘭州國(guó)際馬拉松賽”,為了了解市民健身情況,某課題組跟蹤了蘭州某跑吧群在各屆全程馬拉松比賽中群友的平均成績(jī)(單位:小時(shí)),具體如下:

(1)求關(guān)于的線性回歸方程;

(2)利用(1)的回歸方程,分析2011年到2015年該跑吧群的成績(jī)變化情況,反映市民健身的效果,并預(yù)測(cè)2016年該跑吧群的比賽平均成績(jī).

附:回歸直線的斜率和截距的最小二乘法估計(jì)公式分別為:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1)討論的單調(diào)性;

(2)若存在兩個(gè)極值點(diǎn),證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在ABC中,DBC邊上的一點(diǎn),且AB=14,BD=6,ADC=,

Ⅰ)求sinDAC;

Ⅱ)求AD的長(zhǎng)和ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2017年4月1日,新華通訊社發(fā)布:國(guó)務(wù)院決定設(shè)立河北雄安新區(qū).消息一出,河北省雄縣、容城、安新3縣及周邊部分區(qū)域迅速成為海內(nèi)外高度關(guān)注的焦點(diǎn).

(1)為了響應(yīng)國(guó)家號(hào)召,北京市某高校立即在所屬的8個(gè)學(xué)院的教職員工中作了“是否愿意將學(xué)校整體搬遷至雄安新區(qū)”的問(wèn)卷調(diào)查,8個(gè)學(xué)院的調(diào)查人數(shù)及統(tǒng)計(jì)數(shù)據(jù)如下:

調(diào)查人數(shù)()

10

20

30

40

50

60

70

80

愿意整體搬遷人數(shù)()

8

17

25

31

39

47

55

66

請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出變量關(guān)于變量的線性回歸方程保留小數(shù)點(diǎn)后兩位有效數(shù)字);若該校共有教職員工2500人,請(qǐng)預(yù)測(cè)該校愿意將學(xué)校整體搬遷至雄安新區(qū)的人數(shù);

(2)若該校的8位院長(zhǎng)中有5位院長(zhǎng)愿意將學(xué)校整體搬遷至雄安新區(qū),現(xiàn)該校擬在這8位院長(zhǎng)中隨機(jī)選取4位院長(zhǎng)組成考察團(tuán)赴雄安新區(qū)進(jìn)行實(shí)地考察,記為考察團(tuán)中愿意將學(xué)校整體搬遷至雄安新區(qū)的院長(zhǎng)人數(shù),求的分布列及數(shù)學(xué)期望.

參考公式及數(shù)據(jù): .

查看答案和解析>>

同步練習(xí)冊(cè)答案