19.我國古代數(shù)學(xué)名著《張邱健算經(jīng)》有“分錢問題”如下:“今有人與錢,初一人與三錢,次一人與四錢,次一人與五錢,以次與之,轉(zhuǎn)多一錢,與訖,還數(shù)聚與均分之,人得一百錢,問人幾何?”則分錢問題中的人數(shù)為195.

分析 由題意,意思是:將錢分給若干人,第一人給3錢,第二人給4錢,第三人給5錢,以此類推,每人比前一人多給1錢,分完后,再把錢收回平均分給各人,結(jié)果每人分得100錢,問有多少人?是一個等差數(shù)列的問題.設(shè)人數(shù)為n,公差為1,首項為3.求前n項和等于100n,可得答案.

解答 解:設(shè)人數(shù)為n,公差為1,首項為3.
則前n項和${S}_{n}=\frac{n(n-1)}{2}+3n$.
由題意:Sn=100n,即$\frac{n(n-1)}{2}+3n=100n$,
解得:n=195.
故答案為195

點評 本題考查了對文字意思的理解和關(guān)系式的建立.屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.若(1-2x)4=a0+a1x+a2x2+a3x3+a4x4,則a0+a1+a3=-39.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知集合A={-2,-1,1,2},B={x|lgx≤1},則A∩B=(  )
A.{-2,-1,1,2}B.{-2,-1,1}C.{1}D.{1,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知函數(shù)$f(x)=\left\{{\begin{array}{l}{1-|x-1|(x≤2)}\\{{e^{x-2}}(-{x^2}+8x-12)(x>2)}\end{array}}\right.$,如在區(qū)間(1,+∞)上存在n(n≥2)個不同的數(shù)x1,x2,x3,…,xn,使得比值$\frac{f({x}_{1})}{{x}_{1}}$=$\frac{f({x}_{2})}{{x}_{2}}$=…=$\frac{f({x}_{n})}{{x}_{n}}$成立,則n的取值集合是(  )
A.{2,3,4,5}B.{2,3}C.{2,3,5}D.{2,3,4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.對于100個黑球和99個白球的任意排列(從左到右排成一行),則一定(  )
A.存在一個白球,它右側(cè)的白球和黑球一樣多
B.存在一個黑球,它右側(cè)的白球和黑球一樣多
C.存在一個白球,它右側(cè)的白球比黑球少一個
D.存在一個黑球,它右側(cè)的白球比黑球少一個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.圓(x-2)2+y2=4關(guān)于直線$y=\frac{{\sqrt{3}}}{3}x$對稱的圓的方程是( 。
A.${(x-\sqrt{3})^2}+{(y-1)^2}=4$B.${(x-\sqrt{2})^2}+{(y-\sqrt{2})^2}=4$C.x2+(y-2)2=4D.${(x-1)^2}+{(y-\sqrt{3})^2}=4$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.將1,2,3,4,…正整數(shù)按如圖所示的方式排成三角形數(shù)組,則第10行左數(shù)第10個數(shù)是91.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.設(shè)i為虛數(shù)單位,則復(fù)數(shù)z=$\frac{1+2i}{i}$的虛部為( 。
A.-2B.-iC.iD.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2017屆湖南長沙長郡中學(xué)高三上周測十二數(shù)學(xué)(理)試卷(解析版) 題型:選擇題

已知是定義在上的偶函數(shù),且在區(qū)間上單調(diào)遞增,若實數(shù)滿足,則的取值范圍是( )

A. B.

C. D.

查看答案和解析>>

同步練習(xí)冊答案