【題目】已知圓:內(nèi)一點(diǎn),點(diǎn)為圓上任意一點(diǎn),線段的垂直平分線與線段連線交于點(diǎn).
(1)求點(diǎn)的軌跡方程;
(2)設(shè)點(diǎn)的軌跡為曲線,過(guò)點(diǎn)的直線與曲線交于不同的兩點(diǎn)、,求的內(nèi)切圓半徑的最大值.
【答案】(1);(2)
【解析】
(1)根據(jù)線段中垂線的性質(zhì)可得,|MP|=|MQ|,又|MQ|+|M|=4,故有|M|+|MP|=4>|P|,根據(jù)橢圓的定義判斷軌跡橢圓,求出值,即得橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè),,設(shè)的內(nèi)切圓的半徑為,當(dāng)最大,就最大,利用直線和橢圓的位置關(guān)系求出最大值,進(jìn)而可得的最大值.
(1)由圓的方程可知,圓心(1,0),半徑等于4,設(shè)點(diǎn)M的坐標(biāo)為,
∵PQ的垂直平分線交Q于M,
∴|MP|=|MQ|.
又|MQ|+|M|=4(半徑),
∴|M|+|MP|=4>|A|=2.
∴點(diǎn)M滿(mǎn)足橢圓的定義,且2=4,2=
∴=2,=1,
,
∴點(diǎn)M的軌跡方程為;
(2)設(shè),,設(shè)的內(nèi)切圓的半徑為,因?yàn)?/span>的周長(zhǎng)為,,因此最大,就最大,
,由題意知,直線的斜率不為零,可設(shè)直線的方程為,
由得,
所以,,
又因直線與橢圓交于不同的兩點(diǎn),故,即,,則,
令,則,
,令,
由函數(shù)的性質(zhì)可知,函數(shù)在上是單調(diào)遞增函數(shù),即當(dāng)時(shí),在上單調(diào)遞增,因此有,所以,
即當(dāng),時(shí),最大,此時(shí),故當(dāng)直線的方程為時(shí),內(nèi)切圓半徑的最大值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知斜三棱柱中,,在底面上的射影恰為的中點(diǎn),且.
(1)求證:;
(2)求直線與平面所成角的正弦值;
(3)在線段上是否存在點(diǎn),使得二面角的平面角為?若存在,確定點(diǎn)的位置;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在四棱錐中,底面為平行四邊形, , , , 點(diǎn)在底面內(nèi)的射影在線段上,且, ,M在線段上,且.
(Ⅰ)證明: 平面;
(Ⅱ)在線段AD上確定一點(diǎn)F,使得平面平面PAB,并求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)的圖象上存在點(diǎn),函數(shù)的圖象上存在點(diǎn),且,關(guān)于軸對(duì)稱(chēng),則的取值范圍是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如果是拋物線上的點(diǎn),它們的橫坐標(biāo)依次為,是拋物線的焦點(diǎn),若,則_______________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某樂(lè)園按時(shí)段收費(fèi),收費(fèi)標(biāo)準(zhǔn)為:每玩一次不超過(guò)小時(shí)收費(fèi)10元,超過(guò)小時(shí)的部分每小時(shí)收費(fèi)元(不足小時(shí)的部分按小時(shí)計(jì)算).現(xiàn)有甲、乙二人參與但都不超過(guò)小時(shí),甲、乙二人在每個(gè)時(shí)段離場(chǎng)是等可能的。為吸引顧客,每個(gè)顧客可以參加一次抽獎(jiǎng)活動(dòng)。
(1) 用表示甲乙玩都不超過(guò)小時(shí)的付費(fèi)情況,求甲、乙二人付費(fèi)之和為44元的概率;
(2)抽獎(jiǎng)活動(dòng)的規(guī)則是:顧客通過(guò)操作按鍵使電腦自動(dòng)產(chǎn)生兩個(gè)[0,1]之間的均勻隨機(jī)數(shù),并按如右所示的程序框圖執(zhí)行.若電腦顯示“中獎(jiǎng)”,則該顧客中獎(jiǎng);若電腦顯示“謝謝”,則不中獎(jiǎng),求顧客中獎(jiǎng)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】檳榔原產(chǎn)于馬來(lái)西亞,中國(guó)主要分布在云南、海南及臺(tái)灣等熱帶地區(qū),在亞洲熱帶地區(qū)廣泛栽培.檳榔是重要的中藥材,在南方一些少數(shù)民族還有將果實(shí)作為一種咀嚼嗜好品,但其被世界衛(wèi)生組織國(guó)際癌癥研究機(jī)構(gòu)列為致癌物清單Ⅰ類(lèi)致癌物.云南某民族中學(xué)為了解,兩個(gè)少數(shù)民族班學(xué)生咀嚼檳榔的情況,分別從這兩個(gè)班中隨機(jī)抽取5名同學(xué)進(jìn)行調(diào)查,將他們平均每周咀嚼檳榔的顆數(shù)作為樣本繪制成莖葉圖如圖所示(圖中的莖表示十位數(shù)字,葉表示個(gè)位數(shù)字).
(1)你能否估計(jì)哪個(gè)班級(jí)學(xué)生平均每周咀嚼檳榔的顆數(shù)較多?
(2)從班的樣本數(shù)據(jù)中隨機(jī)抽取一個(gè)不超過(guò)19的數(shù)據(jù)記為,從班的樣本數(shù)據(jù)中隨機(jī)抽取一個(gè)不超過(guò)21的數(shù)據(jù)記為,求的概率;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在四面體A-BCD中,有兩條棱的長(zhǎng)為,其余棱的長(zhǎng)度都為1;
(1)若,且,求二面角A-BC-D的余弦值;
(2)求a的取值范圍,使得這樣的四面體是存在的;
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com