【題目】筆、墨、紙、硯是中國獨有的文書工具,即“文房四寶”.筆、墨、紙、硯之名,起源于南北朝時期,其中的“紙”指的是宣紙,宣紙“始于唐代,產于涇縣”,而唐代涇縣隸屬于宣州府管轄,故因地而得名“宣紙”,宣紙按質量等級,可分為正牌和副牌(優(yōu)等品和合格品),某公司年產宣紙10000刀,公司按照某種質量標準值x給宣紙確定質量等級,如表所示:
x | (48,52] | (44,48]∪(52,56] | (0,44]∪(56,100] |
質量等級 | 正牌 | 副牌 | 廢品 |
公司在所生產的宣紙中隨機抽取了一刀(100張)進行檢驗,得到頻率分布直方圖如圖所示,已知每張正牌紙的利潤是10元,副牌紙的利潤是5元,廢品虧損10元.
(Ⅰ)按正牌、副牌、廢品進行分層抽樣,從這一刀(100張)紙中抽出一個容量為5的樣本,再從這個樣本中隨機抽出兩張,求其中無廢品的概率;
(Ⅱ)試估計該公司生產宣紙的年利潤(單位:萬元).
【答案】(Ⅰ);(Ⅱ)400萬元
【解析】
(I)利用列舉法,結合古典概型概率計算公式,計算出所求概率.
(II)根據(jù)頻率分布直方圖求得一刀宣紙的利潤,由此估計出年利潤.
(Ⅰ)按正牌、副牌、廢品進行分層抽樣,從這一刀(100張)約中抽出一個容量為5的樣本,
設抽出的2張正牌為A,B,2張副牌為a,b,1張廢品為t,從中任取兩張,基本事件有:
AB,Aa,Ab,At,Ba,Bb,Bt,ab,at,bt,共10種,
其中無廢品包含的基本事件有:AB,Aa,Ab,Ba,Bb,ab,共6種,∴其中無廢品的概率p.
(Ⅱ)由頻率分布直方圖得:一刀(100張)宣紙有正牌宣紙100×0.1×4=40張,
有副牌宣紙100×0.05×4×2=40張,有廢品100×0.025×4×2=20張,
∴該公司一刀宣紙的利潤為40×10+40×5+20×(﹣10)=400元,
∴估計該公司生產宣紙的年利潤為:400萬元.
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,已知曲線的參數(shù)方程:(為參數(shù)),以坐標原點為極點,以軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.
(1)求曲線的普通方程;
(2)過曲線上一點作直線與曲線交于兩點,中點為,,求的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(本小題滿分12分)如圖,在多面體中,底面是邊長為的的菱形, ,四邊形是矩形,平面平面, , 和分別是和的中點.
(Ⅰ)求證:平面平面;
(Ⅱ)求二面角的大小.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2019新型冠狀病毒感染的肺炎的傳播有飛沫、氣溶膠、接觸等途徑,為了有效抗擊疫情,隔離性防護是一項具體有效措施.某市為有效防護疫情,宣傳居民盡可能不外出,鼓勵居民的生活必需品可在網上下單,商品由快遞業(yè)務公司統(tǒng)一配送(配送費由政府補貼).快遞業(yè)務主要由甲公司與乙公司兩家快遞公司承接:“快遞員”的工資是“底薪+送件提成”.這兩家公司對“快遞員”的日工資方案為:甲公司規(guī)定快遞員每天底薪為70元,每送件一次提成1元;乙公司規(guī)定快遞員每天底薪為120元,每日前83件沒有提成,超過83件部分每件提成5元,假設同一公司的快遞員每天送件數(shù)相同,現(xiàn)從這兩家公司往年忙季各隨機抽取一名快遞員并調取其100天的送件數(shù),得到如下條形圖:
(1)求乙公司的快遞員一日工資y(單位:元)與送件數(shù)n的函數(shù)關系;
(2)若將頻率視為概率,回答下列問題:
①記甲公司的“快遞員”日工資為X(單位:元).求X的分布列和數(shù)學期望;
②小王想到這兩家公司中的一家應聘“快遞員”的工作,如果僅從日收入的角度考慮,請你利用所學過的統(tǒng)計學知識為他作出選擇,并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】以直角坐標系的原點為極點,軸的非負半軸為極軸建立極坐標系,曲線的極坐標方程為,直線的參數(shù)方程為(為參數(shù)).
(1)求曲線的參數(shù)方程與直線的普通方程;
(2)設點過為曲線上的動點,點和點為直線上的點,且滿足為等邊三角形,求邊長的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的極值;
(2)若不等式恒成立,求的最小值(其中e為自然對數(shù)的底數(shù)).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】我國是世界嚴重缺水的國家,城市缺水問題較為突出,某市政府為了鼓勵居民節(jié)約用水,計劃在本市試行居民生活用水定額管理,即確定一個合理的居民月用水量標準(噸),用水量不超過的部分按平價收費,超過的部分按議價收費,為了了解全市民月用水量的分布情況,通過抽樣,獲得了100位居民某年的月用水量(單位:噸),將數(shù)據(jù)按照分成9組,制成了如圖所示的頻率分布直方圖.
(Ⅰ)若全市居民中月均用水量不低于3噸的人數(shù)為3.6萬,試估計全市有多少居民?并說明理由;
(Ⅱ)若該市政府擬采取分層抽樣的方法在用水量噸數(shù)為和之間選取7戶居民作為議價水費價格聽證會的代表,并決定會后從這7戶家庭中按抽簽方式選出4戶頒發(fā)“低碳環(huán)保家庭”獎,設為用水量噸數(shù)在中的獲獎的家庭數(shù),為用水量噸數(shù)在中的獲獎家庭數(shù),記隨機變量,求的分布列和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在直三棱柱中ABC—A1B1C1,ABAC,AB=3,AC=4,B1CAC1.
(1)求AA1的長;
(2)試判斷在側棱BB1上是否存在點P,使得直線PC與平面AA1C1C所成角和二面角B—A1C—A的大小相等,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com