分析 (1)由題意已知二次函數(shù)y=f1(x)的圖象以原點(diǎn)為頂點(diǎn)且過(guò)點(diǎn)(1,1),設(shè)出函數(shù)的解析式,然后根據(jù)待定系數(shù)法求出函數(shù)的解析式.
(2)由已知f(x)=f(a),得:x2+8x=a2+8a,由方程根的思想得到三個(gè)根互不相等.
解答 解:(1)設(shè)二次函數(shù)f1(x)=ax2+bx+c,
∵f(x)的圖象以原點(diǎn)為頂點(diǎn)∴b=0,c=0,
∵過(guò)點(diǎn)(1,1),∴a=1,
∴f(x)的解析式為f(x)=x2.
設(shè)f2(x)=kx(k>0),它的圖象與直線y=x的交點(diǎn)分別為A(√k,√k),B(-√k,-√k),
由|AB|=8,得k=8,
∴f2(x)=8x,
故f(x)=x2+8x.
(2)由f(x)=f(a),得x2+8x=a2+8a,即(x-a)(x+a-8ax)=0,
得方程的一個(gè)解x1=a,
方程x+a-8ax=0化為ax2+a2x-8=0,
由a>3,△=a4+32a>0得x2=−a2−√a4+32a2a,x3=−a2+√a4+32a2a,
∵x2<0,x3>0,
∴x1≠x2,且x2≠x3,
若x1=x3,即a=−a2+√a4+32a2a,則3a2=√a4+32a,a4=4a,
得a=0或a=\root{3}{4},這與a>3矛盾,
∴x1≠x3,
故原方程f(x)=f(a)有三個(gè)實(shí)數(shù)解.
點(diǎn)評(píng) 此題考查了方程根的存在性及其個(gè)數(shù)的判斷,還考察了待定系數(shù)法求函數(shù)的解析式,綜合比較強(qiáng),難度較大.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -1 | B. | 0 | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ?x∉R,x2不是無(wú)理數(shù) | B. | ?x∈R,x2不是無(wú)理數(shù) | ||
C. | ?x∉R,x2不是無(wú)理數(shù) | D. | ?x∈R,x2不是無(wú)理數(shù) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ?x∈R,2x>x2 | B. | ?x∈R,ex<0 | ||
C. | 若a>b,c>d,則a-c>b-d | D. | ac2<bc2是a<b的充分不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com