2.已知x,y滿足約束條件$\left\{\begin{array}{l}{x-2≤0}\\{y-1≤0}\\{x+2y-2≥0}\end{array}\right.$,則目標(biāo)函數(shù)z=y-x的取值范圍是(  )
A.[-2,-1]B.[-2,1]C.[-1,2]D.[1,2]

分析 作出不等式組表示的平面區(qū)域;作出目標(biāo)函數(shù)對應(yīng)的直線;結(jié)合圖象知當(dāng)直線過A,B時,z最小、最大,從而得出目標(biāo)函數(shù)z=y-x的取值范圍.

解答 解:畫可行域如圖,畫直線y-x=0,
平移直線y-x=0過點A(0,1)時z有最大值1;
平移直線y-x=0過點B(2,0)時z有最小值-2;
則z=y-x的取值范圍是[-2,1].
故選:B.

點評 本題考查畫不等式組表示的平面區(qū)域、考查數(shù)形結(jié)合求函數(shù)的最值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知x>1,則函數(shù)y=$\frac{{x}^{2}+8}{x-1}$的最小值是8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.函數(shù)f(x)=$\frac{lg(x+1)}{\sqrt{x-1}}$的定義域為( 。
A.(-1,+∞)B.(-1,1)C.[1,+∞)D.(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.在△ABC中,角A,B,C所對的邊分別為a,b,c,若sinA=$\sqrt{3}$sinB,c=6,B=30°.
(1)求b的值;
(2)求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.直線y=a分別與函數(shù)y=4x+4和y=3x+lnx的圖象相交于M、N兩點,則|MN|的最小值為( 。
A.5B.1C.$\frac{5}{4}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知向量$\overrightarrow{a}$=(3,5,0),$\overrightarrow$=(1,2,-1),則|$\overrightarrow{a}$-2$\overrightarrow$|等于( 。
A.6B.$\sqrt{6}$C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.祖暅,字景爍,祖沖之之子,南北朝時代的偉大科學(xué)家.祖暅在數(shù)學(xué)上有突出的貢獻,他在實踐的基礎(chǔ)上,于5世紀(jì)末提出下面的計算原理:祖暅原理:夾在兩個平行平面之間的兩個幾何體,被平行于這兩個平面的任意平面所截,如果截得的兩個截面的面積總相等,那么這兩個幾何體的體積相等,請同學(xué)們用祖暅原理解決如下問題:如圖,有一個倒圓錐形容器,它的軸截面是一個正三角形,在容器內(nèi)放一個半徑為r的鐵球,再注入水,使水面與球正好相切(而且球與倒圓錐相切效果很好,水不能流到倒圓錐容器底部),然后將球取出,則這時容器中水的深度為$\root{3}{15}$r.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.設(shè)i是虛數(shù)單位,則復(fù)數(shù)z=$\frac{(i-3)^{2}}{1+i}$的實部為(  )
A.-2B.1C.3D.-7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2016-2017學(xué)年內(nèi)蒙古高二文上月考一數(shù)學(xué)試卷(解析版) 題型:填空題

若直線y=kx+1與曲線x=有兩個不同的交點,則k的取值范圍為

查看答案和解析>>

同步練習(xí)冊答案