12.過y2=4x的焦點F作兩條弦AB和CD,且AB⊥x軸,|CD|=2|AB|,則弦CD所在直線的方程是x+y+1=0或x+y-1=0.

分析 根據(jù)題意知AB為拋物線的通徑進而求出|AB|和|CD|,滿足條件的直線CD有兩條,驗證選項B,把直線和拋物線方程聯(lián)立,求得x1+x2,進而根據(jù)拋物線的定義得出的|CD|符合題意.同樣的方法可知x+y-1=0也符合題意.故可得出答案.

解答 解:依題意知AB為拋物線的通徑,|AB|=2p=4,|CD|=2|AB|=8,
顯然滿足條件的直線CD有兩條,
由$\left\{\begin{array}{l}{{y}^{2}=4x}\\{y=x-1}\end{array}\right.$得:x2-6x+1=0,x1+x2=6,此時|CD|=x1+x2+p=8,x+y+1=0符合題意.
同理,x+y-1=0也符合題意.
故答案是:x+y+1=0或x+y-1=0.

點評 本題主要考查了拋物線的性質(zhì),直線的一般式方程.屬基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

17.在△ABC中,sin2A+sinAsinB=6sin2B.
(1)求$\frac{BC}{AC}$的值;
(2)若$cosC=\frac{3}{4}$,求sinB的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)過點(1,$\frac{3}{2}$),左右焦點為F1、F2,右頂點為A,上頂點為B,且|AB|=$\frac{{\sqrt{7}}}{2}$|F1F2|.
(1)求橢圓E的方程;
(2)直線l:y=-x+m與橢圓E交于C、D兩點,與以F1、F2為直徑的圓交于M、N兩點,且$\frac{{\sqrt{7}|CD|}}{|MN|}$=$\frac{36}{7}$,求m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.若函數(shù)f(x)=$\left\{\begin{array}{l}\frac{a}{x},x>1\\(2-3a)x+1,x≤1\end{array}$是R上的減函數(shù),則實數(shù)R的取值范圍是 ( 。
A.$(\frac{2}{3},1)$B.$[\frac{3}{4},1)$C.$(\frac{2}{3},\frac{3}{4}]$D.($\frac{2}{3}$,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知函數(shù)f(x)=lnx,g(x)=x-$\frac{1}{2}$x2
(Ⅰ)若點P是函數(shù)f(x)=lnx上任意一點,求點P到直線y=x+1的最小距離;
(Ⅱ)當x>e時,求證函數(shù)f(x)=lnx的圖象位g(x)=x-$\frac{1}{2}$x2圖象的上方.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.已知反比例函數(shù)y=$\frac{6}{x}$的圖象與正比例函數(shù)y=$\frac{2}{3}$x的圖象交于A,B兩點,B點坐標為(-3,-2),則A點的坐標為(  )
A.(-1,-6)B.(1,6)C.(3,2)D.(2,3)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.如圖,直立于地面上的電線桿AB,在陽光下落在水平地面和坡面上的影子分別是BC,CD,測得BC=6米,CD=4米,∠BCD=150°,在D處測得電線桿頂端A的仰角為30°,試求電線桿的高度(結(jié)果保留根號).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.由曲線y=x 2-1,直線x=0,x=2和x軸圍成的封閉圖形的面積(如圖)可表示為( 。
A.${∫}_{0}^{2}$(x 2-1)dxB.${∫}_{0}^{2}$|(x 2-1)|dx
C.|${∫}_{0}^{2}$(x 2-1)dx|D.${∫}_{0}^{1}$(x 2-1)dx+${∫}_{1}^{2}$(x 2-1)dx

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知Rt△ABC的頂點分別為A(1,2),B(-1,-2).,C(1,-2),圓E是△ABC的外接圓.
(I)求圓E的方程;
(II)求直線lmx-y-m+1=0被圓E截得的最短弦長及對應的直線l的方程.

查看答案和解析>>

同步練習冊答案