分析 根據(jù)題意知AB為拋物線的通徑進而求出|AB|和|CD|,滿足條件的直線CD有兩條,驗證選項B,把直線和拋物線方程聯(lián)立,求得x1+x2,進而根據(jù)拋物線的定義得出的|CD|符合題意.同樣的方法可知x+y-1=0也符合題意.故可得出答案.
解答 解:依題意知AB為拋物線的通徑,|AB|=2p=4,|CD|=2|AB|=8,
顯然滿足條件的直線CD有兩條,
由$\left\{\begin{array}{l}{{y}^{2}=4x}\\{y=x-1}\end{array}\right.$得:x2-6x+1=0,x1+x2=6,此時|CD|=x1+x2+p=8,x+y+1=0符合題意.
同理,x+y-1=0也符合題意.
故答案是:x+y+1=0或x+y-1=0.
點評 本題主要考查了拋物線的性質(zhì),直線的一般式方程.屬基礎題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $(\frac{2}{3},1)$ | B. | $[\frac{3}{4},1)$ | C. | $(\frac{2}{3},\frac{3}{4}]$ | D. | ($\frac{2}{3}$,+∞) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-1,-6) | B. | (1,6) | C. | (3,2) | D. | (2,3) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | ${∫}_{0}^{2}$(x 2-1)dx | B. | ${∫}_{0}^{2}$|(x 2-1)|dx | ||
C. | |${∫}_{0}^{2}$(x 2-1)dx| | D. | ${∫}_{0}^{1}$(x 2-1)dx+${∫}_{1}^{2}$(x 2-1)dx |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com