【題目】如圖,在四棱錐中,平面,四邊形是菱形,,,上任意一點(diǎn)。

(1)求證:;

(2)當(dāng)面積的最小值是9時(shí),在線段上是否存在點(diǎn),使與平面所成角的正切值為2?若存在?求出的值,若不存在,請(qǐng)說(shuō)明理由

【答案】(1)見解析;(2)

【解析】

(1)由三垂線定理AC垂直射影BD,AC垂直斜線DE。(2)面積最小時(shí),最小,則.可得,可證平面。作于點(diǎn),則平面,所以就是與平面所成角.

(1)證明:連接,設(shè)相交于點(diǎn)。

因?yàn)樗倪呅?/span>是菱形,所以。

又因?yàn)?/span>平面,平面

上任意一點(diǎn),平面,所以

(2)連.由(I),知平面,平面,所以

面積最小時(shí),最小,則

,解得

平面,

又由 ,而,故平面

于點(diǎn),則平面,所以就是與平面所成角.

在直角三角形中,

所以,設(shè),則。

,即

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某地?cái)M規(guī)劃種植一批芍藥,為了美觀,將種植區(qū)域(區(qū)域I)設(shè)計(jì)成半徑為1km的扇形,中心角).為方便觀賞,增加收入,在種植區(qū)域外圍規(guī)劃觀賞區(qū)(區(qū)域II)和休閑區(qū)(區(qū)域III),并將外圍區(qū)域按如圖所示的方案擴(kuò)建成正方形,其中點(diǎn),分別在邊上.已知種植區(qū)、觀賞區(qū)和休閑區(qū)每平方千米的年收入分別是10萬(wàn)元、20萬(wàn)元、20萬(wàn)元.

(1)要使觀賞區(qū)的年收入不低于5萬(wàn)元,求的最大值;

(2)試問(wèn):當(dāng)為多少時(shí),年總收入最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】我國(guó)南北朝時(shí)期的數(shù)學(xué)家祖暅提出了計(jì)算幾何體體積的祖暅原理:冪勢(shì)既同,則積不容異.意思是兩個(gè)同高的幾何體,如果在等高處的截面積都相等,那么這兩個(gè)幾何體的體積相等.現(xiàn)有某幾何體和一個(gè)圓錐滿足祖暅原理的條件,若該圓錐的側(cè)面展開圖是半徑為3的圓的三分之一,則該幾何體的體積為(

A.πB.πC.4D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

() 若函數(shù)有零點(diǎn), 求實(shí)數(shù)的取值范圍;

(Ⅱ) 證明: 當(dāng)時(shí), .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2019年高考前夕某地天空出現(xiàn)了一朵點(diǎn)贊云,為了將這朵祥云送給馬上升高三的各位學(xué)子,現(xiàn)以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線 的極坐標(biāo)方程為,在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),曲線的參數(shù)方程為為參數(shù)).

(1)求曲線的直角坐標(biāo)方程:

(2)點(diǎn)為曲線上任意一點(diǎn),點(diǎn)為曲線上任意一點(diǎn),求的最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】市場(chǎng)份額又稱市場(chǎng)占有率,它在很大程度上反映了企業(yè)的競(jìng)爭(zhēng)地位和盈利能力,是企業(yè)非常重視的一個(gè)指標(biāo).近年來(lái),服務(wù)機(jī)器人與工業(yè)機(jī)器人以迅猛的增速占領(lǐng)了中國(guó)機(jī)器人領(lǐng)域龐大的市場(chǎng)份額,隨著“一帶一路”的積極推動(dòng),包括機(jī)器人產(chǎn)業(yè)在內(nèi)的眾多行業(yè)得到了更廣闊的的發(fā)展空間,某市場(chǎng)研究人員為了了解某機(jī)器人制造企業(yè)的經(jīng)營(yíng)狀況,對(duì)該機(jī)器人制造企業(yè)2017年1月至6月的市場(chǎng)份額進(jìn)行了調(diào)查,得到如下資料:

月份

1

2

3

4

5

6

市場(chǎng)份額

11

163

16

15

20

21

請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程,并預(yù)測(cè)該企業(yè)2017年7月份的市場(chǎng)份額.

如圖是該機(jī)器人制造企業(yè)記錄的2017年6月1日至6月30日之間的產(chǎn)品銷售頻數(shù)(單位:天)統(tǒng)計(jì)圖.設(shè)銷售產(chǎn)品數(shù)量為,經(jīng)統(tǒng)計(jì),當(dāng)時(shí),企業(yè)每天虧損約為200萬(wàn)元;

當(dāng)時(shí),企業(yè)平均每天收入約為400萬(wàn)元;

當(dāng)時(shí),企業(yè)平均每天收入約為700萬(wàn)元.

①設(shè)該企業(yè)在六月份每天收入為,求的數(shù)學(xué)期望;

②如果將頻率視為概率,求該企業(yè)在未來(lái)連續(xù)三天總收入不低于1200萬(wàn)元的概率.

附:回歸直線的方程是,其中

,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知焦點(diǎn)為的的拋物線)與圓心在坐標(biāo)原點(diǎn),半徑為交于,兩點(diǎn),且,,其中,,均為正實(shí)數(shù).

(1)求拋物線的方程;

(2)設(shè)點(diǎn)為劣弧上任意一點(diǎn),過(guò)的切線交拋物線,兩點(diǎn),過(guò),的直線,均于拋物線相切,且兩直線交于點(diǎn),求點(diǎn)的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知隨機(jī)變量X服從正態(tài)分布Nμ,σ2),且PμXμ)=0.954 4,PμσXμσ)=0.682 6.μ4,σ1,則P5X6)=( )

A. 0.135 9 B. 0.135 8 C. 0.271 8 D. 0.271 6;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,已知圓過(guò)坐標(biāo)原點(diǎn)且圓心在曲線 上.

(1)若圓分別與軸、軸交于點(diǎn)(不同于原點(diǎn)),求證:的面積為定值;

(2)設(shè)直線與圓交于不同的兩點(diǎn),且,求圓的方程;

(3)點(diǎn)在直線上,過(guò)點(diǎn)引圓(題(2))的兩條切線,切點(diǎn)為,求證:直線恒過(guò)定點(diǎn).

查看答案和解析>>

同步練習(xí)冊(cè)答案