【題目】已知焦點(diǎn)為的的拋物線)與圓心在坐標(biāo)原點(diǎn),半徑為交于,兩點(diǎn),且,,其中,均為正實(shí)數(shù).

(1)求拋物線的方程;

(2)設(shè)點(diǎn)為劣弧上任意一點(diǎn),過的切線交拋物線,兩點(diǎn),過,的直線均于拋物線相切,且兩直線交于點(diǎn),求點(diǎn)的軌跡方程.

【答案】(1)答案見解析;(2).

【解析】試題分析:(1)由題意可得到將點(diǎn)A坐標(biāo)代入方程可得到m=2,進(jìn)而得到點(diǎn)A的坐標(biāo),由點(diǎn)點(diǎn)距得到半徑;(2)設(shè),,,,由直線和曲線相切得到,同理,聯(lián)立兩直線得,根據(jù)點(diǎn)在圓上可消參得到軌跡.

解析:

(1)由題意,,故

所以拋物線的方程為.

代入拋物線方程,解得

因此,

的方程為.

(2)設(shè),,

設(shè),

則由

,解得,

同理.

則由

解得

因直線 .

則由

,

因此根據(jù)點(diǎn)在圓上滿足方程,消參得到.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓經(jīng)過點(diǎn),且離心率為

(Ⅰ)求橢圓的方程

(Ⅱ)設(shè)是橢圓上的點(diǎn),直線為坐標(biāo)原點(diǎn))的斜率之積為.若動(dòng)點(diǎn)滿足,試探究是否存在兩個(gè)定點(diǎn),使得為定值?若存在,的坐標(biāo);若不存在請說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于函數(shù),若存在區(qū)間,使得,則稱函數(shù)可等域函數(shù),區(qū)間A為函數(shù)的一個(gè)可等域區(qū)間”.給出下列四個(gè)函數(shù):①;②;③;④.其中存在唯一可等域區(qū)間可等域函數(shù)的個(gè)數(shù)是( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,平面,四邊形是菱形,,上任意一點(diǎn)。

(1)求證:;

(2)當(dāng)面積的最小值是9時(shí),在線段上是否存在點(diǎn),使與平面所成角的正切值為2?若存在?求出的值,若不存在,請說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,直棱柱ABC-中,D,E分別是ABBB1的中點(diǎn),=AC=CB=AB.

)證明://平面;

)求二面角D--E的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),,其中為常數(shù),是自然對數(shù)的底數(shù).

(1)設(shè),若函數(shù)在區(qū)間上有極值點(diǎn),求實(shí)數(shù)的取值范圍;

(2)證明:當(dāng)時(shí),恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)

1)若函數(shù)存在零點(diǎn),求實(shí)數(shù)的最小值;

2)若函數(shù)有兩個(gè)零點(diǎn)分別是,且對于任意的時(shí)恒成立,求實(shí)數(shù)的取值集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)個(gè)不全相等的正數(shù),,…,依次圍成一個(gè)圓圈.

(Ⅰ)設(shè),且,,,…,是公差為的等差數(shù)列,而,,,…,是公比為的等比數(shù)列,數(shù)列,,…,的前項(xiàng)和滿足,,求數(shù)列的通項(xiàng)公式;

(Ⅱ)設(shè),若數(shù)列,,…,每項(xiàng)是其左右相鄰兩數(shù)平方的等比中項(xiàng),求;

(Ⅲ)在(Ⅱ)的條件下,,求符合條件的的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】用符號“”或“”填空:

1)設(shè)A為所有亞洲國家組成的集合,則中國______________A,美國__________A,印度____________A,英國_____________A;

2)若,則-1_____________A

3)若,則3________________B;

4)若,則8_______________C9.1____________C.

查看答案和解析>>

同步練習(xí)冊答案