【題目】給出下列不等式:1+ + >1,1+ + +…+ ,1+ + +…+ >2…,則按此規(guī)律可猜想第n個(gè)不等式為

【答案】1+ + +…+
【解析】解:觀察不等式中最后一項(xiàng)的分母分別是3、7、15、31…

將每個(gè)數(shù)加1得4、8、16、32可知通項(xiàng)為2n+1則3、7、15、31…的通項(xiàng)為2n+1﹣1

不等式右邊是首項(xiàng)為1,公差為 的等差數(shù)列,

∴按此規(guī)律可猜想第n個(gè)不等式為1+ + +…+

所以答案是1+ + +…+

【考點(diǎn)精析】認(rèn)真審題,首先需要了解歸納推理(根據(jù)一類事物的部分對(duì)象具有某種性質(zhì),退出這類事物的所有對(duì)象都具有這種性質(zhì)的推理,叫做歸納推理).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,求的最大值及相應(yīng)的的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,函數(shù).

1)當(dāng)時(shí),證明是奇函數(shù);

2)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;

3)當(dāng)時(shí),求函數(shù)上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1)求

(2)探究的單調(diào)性,并證明你的結(jié)論;

(3)若為奇函數(shù),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知Ω={(x,y)|0≤x≤1,0≤y≤1},A是由直線y=0,x=a(0<a≤1)和曲線y=x3圍成的曲邊三角形的平面區(qū)域,若向區(qū)域Ω上隨機(jī)投一點(diǎn)P,點(diǎn)P落在區(qū)域A內(nèi)的概率是 ,則a的值為( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD是矩形,PA⊥平面ABCD,AP=AB=2,BC=2 ,E,F(xiàn)分別是AD,PC的中點(diǎn).

(1)證明:PC⊥平面BEF;
(2)求平面BEF與平面BAP所成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列關(guān)于回歸分析的說(shuō)法中錯(cuò)誤的是( )
A.回歸直線一定過(guò)樣本中心(
B.殘差圖中殘差點(diǎn)比較均勻地落在水平的帶狀區(qū)域中,說(shuō)明選用的模型比較合適
C.兩個(gè)模型中殘差平方和越小的模型擬合的效果越好
D.甲、乙兩個(gè)模型的R2分別約為0.98和0.80,則模型乙的擬合效果更好

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,已知點(diǎn), 在圓上.

(1)求圓的方程;

(2)過(guò)點(diǎn)的直線交圓, 兩點(diǎn). 

①若弦長(zhǎng),求直線的方程;

②分別過(guò)點(diǎn) 作圓的切線,交于點(diǎn),判斷點(diǎn)在何種圖形上運(yùn)動(dòng),并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐A﹣BCDE中,平面ABC⊥平面BCDE,∠CDE=∠BED=90°,AB=CD=2,DE=BE=1,AC=

(Ⅰ)證明:AC⊥平面BCDE;
(Ⅱ)求直線AE與平面ABC所成的角的正切值.

查看答案和解析>>

同步練習(xí)冊(cè)答案