【題目】給出下列不等式:1+ + >1,1+ + +…+ > ,1+ + +…+ >2…,則按此規(guī)律可猜想第n個(gè)不等式為 .
【答案】1+ + +…+ >
【解析】解:觀察不等式中最后一項(xiàng)的分母分別是3、7、15、31…
將每個(gè)數(shù)加1得4、8、16、32可知通項(xiàng)為2n+1則3、7、15、31…的通項(xiàng)為2n+1﹣1
不等式右邊是首項(xiàng)為1,公差為 的等差數(shù)列,
∴按此規(guī)律可猜想第n個(gè)不等式為1+ + +…+ > .
所以答案是1+ + +…+ > .
【考點(diǎn)精析】認(rèn)真審題,首先需要了解歸納推理(根據(jù)一類事物的部分對(duì)象具有某種性質(zhì),退出這類事物的所有對(duì)象都具有這種性質(zhì)的推理,叫做歸納推理).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,函數(shù).
(1)當(dāng)時(shí),證明是奇函數(shù);
(2)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(3)當(dāng)時(shí),求函數(shù)在上的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
(1)求
(2)探究的單調(diào)性,并證明你的結(jié)論;
(3)若為奇函數(shù),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知Ω={(x,y)|0≤x≤1,0≤y≤1},A是由直線y=0,x=a(0<a≤1)和曲線y=x3圍成的曲邊三角形的平面區(qū)域,若向區(qū)域Ω上隨機(jī)投一點(diǎn)P,點(diǎn)P落在區(qū)域A內(nèi)的概率是 ,則a的值為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD是矩形,PA⊥平面ABCD,AP=AB=2,BC=2 ,E,F(xiàn)分別是AD,PC的中點(diǎn).
(1)證明:PC⊥平面BEF;
(2)求平面BEF與平面BAP所成的銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列關(guān)于回歸分析的說(shuō)法中錯(cuò)誤的是( )
A.回歸直線一定過(guò)樣本中心( )
B.殘差圖中殘差點(diǎn)比較均勻地落在水平的帶狀區(qū)域中,說(shuō)明選用的模型比較合適
C.兩個(gè)模型中殘差平方和越小的模型擬合的效果越好
D.甲、乙兩個(gè)模型的R2分別約為0.98和0.80,則模型乙的擬合效果更好
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,已知點(diǎn), , 在圓上.
(1)求圓的方程;
(2)過(guò)點(diǎn)的直線交圓于, 兩點(diǎn).
①若弦長(zhǎng),求直線的方程;
②分別過(guò)點(diǎn), 作圓的切線,交于點(diǎn),判斷點(diǎn)在何種圖形上運(yùn)動(dòng),并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐A﹣BCDE中,平面ABC⊥平面BCDE,∠CDE=∠BED=90°,AB=CD=2,DE=BE=1,AC= .
(Ⅰ)證明:AC⊥平面BCDE;
(Ⅱ)求直線AE與平面ABC所成的角的正切值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com