【題目】如圖,多面體中,四邊形為鈍角的平行四邊形,四邊形為直角梯形,.

1)求證:

2)若點(diǎn)到平面的距離為,求直線與平面所成角的正弦值.

【答案】1)證明見解析(2

【解析】

(1)利用勾股定理證得,結(jié)合,證得平面,根據(jù)線線平行證得平面,由此證得.判斷出四邊形為菱形,由此證得,由此證得平面,從而證得.

(2)利用第一問的結(jié)論,判斷出線與平面所成角,結(jié)合點(diǎn)到平面的距離為,求得的長,然后通過解三角形,把相應(yīng)的線面角的正弦值求出.

1)在中,,所以

又因?yàn)?/span>,所以平面,因?yàn)?/span>

所以平面,所以,

在平行四邊形中,且,所以平行四邊形為菱形

于是

所以平面,而平面,所以.

2)因?yàn)?/span>平面且垂足為,所以為直線與平面所成角.

因?yàn)?/span>平面平面,所,

所以到平面的距離為到平面的距離.

所以平面平面

所以平面平面且交線為

,則,所以

所以,所以

中,

所以.所以直線與平面所成角的正弦值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),直線的參數(shù)方程為,(t為參數(shù)),在以原點(diǎn)為極點(diǎn),x軸正半軸為極軸的極坐標(biāo)中,曲線的極坐標(biāo)方程為.

1)將的方程化為極坐標(biāo)方程;

2)若曲線的公共點(diǎn)都在上,,求r.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù).

1)當(dāng)時,若上是單調(diào)函數(shù),求實(shí)數(shù)的取值范圍;

2)若,處取得極值,且方程上有唯一解時,的取值范圍為,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2016里約奧運(yùn)會期間,小趙?吹4個電視頻道中有2個頻道在轉(zhuǎn)播奧運(yùn)比賽,若小趙這時打開電視,隨機(jī)打開其中兩個頻道試看,那么,小趙所看到的第一個電視臺恰好沒有轉(zhuǎn)播奧運(yùn)比賽,而第二個電視臺恰好在轉(zhuǎn)播奧運(yùn)比賽的概率為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形是梯形,四邊形是矩形,且平面平面,,,的中點(diǎn).

1)證明:平面;

2)求平面與平面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=(k+)lnx+,k∈[4,+∞),曲線y=f(x)上總存在兩點(diǎn)M(x1,y1),N(x2,y2),使曲線y=f(x)在M,N兩點(diǎn)處的切線互相平行,則x1+x2的取值范圍為

A. ,+∞) B. ,+∞) C. [,+∞) D. [,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在數(shù)列中,已知.

1)求數(shù)列的通項(xiàng)公式;

2)求證:數(shù)列是等差數(shù)列;

3)設(shè)數(shù)列滿足的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),曲線的參數(shù)方程為為參數(shù)),以該直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

(Ⅰ)分別求曲線的極坐標(biāo)方程和曲線的直角坐標(biāo)方程;

(Ⅱ)設(shè)直線交曲線,兩點(diǎn),交曲線,兩點(diǎn),求的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

1)求函數(shù)上的最大值;

2)若函數(shù)在區(qū)間上有零點(diǎn),求的取值范圍;

3)求證:.

查看答案和解析>>

同步練習(xí)冊答案