【題目】甲乙丙三人在進(jìn)行一項(xiàng)投擲骰子游戲中規(guī)定:若擲出1點(diǎn),甲得1分,若擲出2點(diǎn)或3點(diǎn),乙得1分;若擲出4點(diǎn)或5點(diǎn)或6點(diǎn),丙得1分,前后共擲3次,設(shè)x,y,z分別表示甲、乙、丙三人的得分.
(1)求x=0,y=1,z=2的概率;
(2)記ξ=x+z,求隨機(jī)變量ξ的概率分布列和數(shù)學(xué)期望.
【答案】
(1)解:設(shè)事件A表示“投擲一次骰子甲得一分”,事件B表示“投擲一次骰子乙得一分”,事件C表示“投擲一次骰子丙得一分”,
則P(A)= ,P(B)= ,P(C)= ,
∴x=0,y=1,z=2的概率p=( )3C ( )( )2 =
(2)解:X=0,1,2,3; Y=0,1,2,3; Z=0,1,2,3.
但是只得3次分,因而必須滿(mǎn)足X+Y+Z=3,隨機(jī)變量ξ的樣本空間為{0,1,2,3}
事實(shí)上ξ=3﹣Y,
∴P(ξ=0)=P(Y=3)=( )3= ,
P(ξ=1)=P(Y=2)= = ,
P(ξ=2)=P(Y=1)= = ,
P(ξ=3)=P(Y=0)=( )3= ,
∴ξ的分布列:
ξ | 0 | 1 | 2 | 3 |
P |
E(ξ)= =2
【解析】(1)設(shè)事件A表示“投擲一次骰子甲得一分”,事件B表示“投擲一次骰子乙得一分”,事件C表示“投擲一次骰子丙得一分”,由已知得P(A)= ,P(B)= ,P(C)= ,從而能求出x=0,y=1,z=2的概率.(2)X=0,1,2,3; Y=0,1,2,3; Z=0,1,2,3.但是只得3次分,因而必須滿(mǎn)足X+Y+Z=3,隨機(jī)變量ξ的樣本空間為{0,1,2,3},事實(shí)上ξ=3﹣Y,分別求出相應(yīng)的概率,由此能求出ξ的分布列和數(shù)學(xué)期望.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解離散型隨機(jī)變量及其分布列的相關(guān)知識(shí),掌握在射擊、產(chǎn)品檢驗(yàn)等例子中,對(duì)于隨機(jī)變量X可能取的值,我們可以按一定次序一一列出,這樣的隨機(jī)變量叫做離散型隨機(jī)變量.離散型隨機(jī)變量的分布列:一般的,設(shè)離散型隨機(jī)變量X可能取的值為x1,x2,.....,xi,......,xn,X取每一個(gè)值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,則稱(chēng)表為離散型隨機(jī)變量X 的概率分布,簡(jiǎn)稱(chēng)分布列.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知Sn是等差數(shù)列{an}的前n項(xiàng)和,且a2=2,S5=15.
(1)求通項(xiàng)公式an;
(2)若數(shù)列{bn}滿(mǎn)足bn=2an﹣an , 求{bn}的前n項(xiàng)和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列四個(gè)函數(shù):
①y=3﹣x;②y=2x﹣1(x>0);③y=x2+2x﹣10,;④ .
其中定義域與值域相同的函數(shù)有( )
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)= +x在x=1處的切線(xiàn)方程為2x﹣y+b=0.
(1)求實(shí)數(shù)a,b的值;
(2)設(shè)函數(shù)g(x)=f(x)+ x2﹣kx,且g(x)在其定義域上存在單調(diào)遞減區(qū)間(即g′(x)<0在其定義域上有解),求實(shí)數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù), ().
(1)求函數(shù)的單調(diào)增區(qū)間;
(2)當(dāng)時(shí),記,是否存在整數(shù),使得關(guān)于的不等式有解?若存在,請(qǐng)求出的最小值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)f(x)=ln ﹣ 的零點(diǎn)一定位于區(qū)間( )
A.(1,2)
B.(2,3)
C.(3,4)
D.(4,5)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一條巡邏船由南向北行駛,在處測(cè)得山頂在北偏東方向上,勻速向北航行分鐘到達(dá)處,測(cè)得山頂位于北偏東方向上,此時(shí)測(cè)得山頂的仰角,若山高為千米,
(1)船的航行速度是每小時(shí)多少千米?
(2)若該船繼續(xù)航行分鐘到達(dá)處,問(wèn)此時(shí)山頂位于處的南偏東什么方向?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】以下四個(gè)命題正確的個(gè)數(shù)( )
①用反證法證明數(shù)學(xué)命題時(shí)首先應(yīng)該做出與命題結(jié)論相矛盾的假設(shè).否定“自然數(shù)a,b,c中恰有一個(gè)奇數(shù)”時(shí)正確的反設(shè)為“自然數(shù)a,b,c中至少有兩個(gè)奇數(shù)或都是偶數(shù)”;
②在復(fù)平面內(nèi),表示兩個(gè)共軛復(fù)數(shù)的點(diǎn)關(guān)于實(shí)軸對(duì)稱(chēng);
③在回歸直線(xiàn)方程 =﹣0.3x+10中,當(dāng)變量x每增加一個(gè)單位時(shí),變量 平均增加0.3個(gè)單位;
④拋物線(xiàn)y=x2過(guò)點(diǎn)( ,2)的切線(xiàn)方程為2x﹣y﹣1=0.
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓: 的長(zhǎng)軸長(zhǎng)為,且橢圓與圓: 的公共弦長(zhǎng)為.
(1)求橢圓的方程.
(2)經(jīng)過(guò)原點(diǎn)作直線(xiàn)(不與坐標(biāo)軸重合)交橢圓于, 兩點(diǎn), 軸于點(diǎn),點(diǎn)在橢圓上,且,求證: , , 三點(diǎn)共線(xiàn)..
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com