精英家教網 > 高中數學 > 題目詳情

如圖,在平面直角坐標系xOy中,橢圓C=1(a>b>0)的離心率為,以坐標原點為圓心,橢圓C的短半軸長為半徑的圓與直線xy+2=0相切.

(1)求橢圓C的方程;
(2)已知點P(0,1),Q(0,2),設M,N是橢圓C上關于y軸對稱的不同兩點,直線PMQN相交于點T.求證:點T在橢圓C上.

(1)=1(2)見解析

解析

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

已知圓C與兩圓x2+(y+4)2=1,x2+(y-2)2=1外切,圓C的圓心軌跡方程為L,設L上的點與點M(x,y)的距離的最小值為m,點F(0,1)與點M(x,y)的距離為n.
(1)求圓C的圓心軌跡L的方程.
(2)求滿足條件m=n的點M的軌跡Q的方程.
(3)在(2)的條件下,試探究軌跡Q上是否存在點B(x1,y1),使得過點B的切線與兩坐標軸圍成的三角形的面積等于.若存在,請求出點B的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知動圓過定點(1,0),且與直線相切.
(1)求動圓圓心的軌跡方程;
(2)設是軌跡上異于原點的兩個不同點,直線的傾斜角分別為,①當時,求證直線恒過一定點;
②若為定值,直線是否仍恒過一定點,若存在,試求出定點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,在直角坐標系中,已知△PAB的周長為8,且點A,B的坐標分別為(-1,0),(1,0).

(1)試求頂點P的軌跡C1的方程;
(2)若動點C(x1,y1)在軌跡C1上,試求動點Q的軌跡C2的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知圓,直線與圓相切,且交橢圓兩點,c是橢圓的半焦距,.
(1)求m的值;
(2)O為坐標原點,若,求橢圓的方程;
(3)在(2)的條件下,設橢圓的左右頂點分別為A,B,動點,直線與直線分別交于M,N兩點,求線段MN的長度的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知過點的直線交橢圓兩點,是橢圓的一個頂點,若線段的中點恰為點.
(1)求直線的方程;
(2)求的面積.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

命題:方程表示的曲線是焦點在y軸上的雙曲線,命題:方程無實根,若為真,為真,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知橢圓的中心為坐標原點,短軸長為2,一條準線方程為lx=2.
(1)求橢圓的標準方程;
(2)設O為坐標原點,F是橢圓的右焦點,點M是直線l上的動點,過點FOM的垂線與以OM為直徑的圓交于點N,求證:線段ON的長為定值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知雙曲線的一條漸近線方程是,它的一個焦點在拋物線的準線上,點是雙曲線右支上相異兩點,且滿足為線段的中點,直線的斜率為
(1)求雙曲線的方程;
(2)用表示點的坐標;
(3)若的中垂線交軸于點,直線軸于點,求的面積的取值范圍.

查看答案和解析>>

同步練習冊答案