已知過點(diǎn)的直線交橢圓于兩點(diǎn),是橢圓的一個頂點(diǎn),若線段的中點(diǎn)恰為點(diǎn).
(1)求直線的方程;
(2)求的面積.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
平面直角坐標(biāo)系xoy中,動點(diǎn)滿足:點(diǎn)P到定點(diǎn)與到y(tǒng)軸的距離之差為.記動點(diǎn)P的軌跡為曲線C.
(1)求曲線C的軌跡方程;
(2)過點(diǎn)F的直線交曲線C于A、B兩點(diǎn),過點(diǎn)A和原點(diǎn)O的直線交直線于點(diǎn)D,求證:直線DB平行于x軸.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知頂點(diǎn)為原點(diǎn)的拋物線的焦點(diǎn)與橢圓的右焦點(diǎn)重合,與在第一和第四象限的交點(diǎn)分別為.
(1)若△AOB是邊長為的正三角形,求拋物線的方程;
(2)若,求橢圓的離心率;
(3)點(diǎn)為橢圓上的任一點(diǎn),若直線、分別與軸交于點(diǎn)和,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知為橢圓的左右焦點(diǎn),是坐標(biāo)原點(diǎn),過作垂直于軸的直線交橢圓于,設(shè) .
(1)證明: 成等比數(shù)列;
(2)若的坐標(biāo)為,求橢圓的方程;
(3)在(2)的橢圓中,過的直線與橢圓交于、兩點(diǎn),若,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在平面直角坐標(biāo)系xOy中,橢圓C:=1(a>b>0)的離心率為,以坐標(biāo)原點(diǎn)為圓心,橢圓C的短半軸長為半徑的圓與直線x-y+2=0相切.
(1)求橢圓C的方程;
(2)已知點(diǎn)P(0,1),Q(0,2),設(shè)M,N是橢圓C上關(guān)于y軸對稱的不同兩點(diǎn),直線PM與QN相交于點(diǎn)T.求證:點(diǎn)T在橢圓C上.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知定點(diǎn)和定直線,動點(diǎn)與定點(diǎn)的距離等于點(diǎn)到定直線的距離,記動點(diǎn)的軌跡為曲線.
(1)求曲線的方程.
(2)若以為圓心的圓與曲線交于、不同兩點(diǎn),且線段是此圓的直徑時,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系xOy中,過點(diǎn)A(-2,-1)橢圓C∶=1(a>b>0)的左焦點(diǎn)為F,短軸端點(diǎn)為B1、B2,=2b2.
(1)求a、b的值;
(2)過點(diǎn)A的直線l與橢圓C的另一交點(diǎn)為Q,與y軸的交點(diǎn)為R.過原點(diǎn)O且平行于l的直線與橢圓的一個交點(diǎn)為P.若AQ·AR=3OP2,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知雙曲線x2-=1.
(1)若一橢圓與該雙曲線共焦點(diǎn),且有一交點(diǎn)P(2,3),求橢圓方程.
(2)設(shè)(1)中橢圓的左、右頂點(diǎn)分別為A、B,右焦點(diǎn)為F,直線l為橢圓的右準(zhǔn)線,N為l上的一動點(diǎn),且在x軸上方,直線AN與橢圓交于點(diǎn)M.若AM=MN,求∠AMB的余弦值;
(3)設(shè)過A、F、N三點(diǎn)的圓與y軸交于P、Q兩點(diǎn),當(dāng)線段PQ的中點(diǎn)為(0,9)時,求這個圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓C1:=1,橢圓C2以C1的短軸為長軸,且與C1有相同的離心率.
(1)求橢圓C2的方程;
(2)設(shè)直線l與橢圓C2相交于不同的兩點(diǎn)A、B,已知A點(diǎn)的坐標(biāo)為(-2,0),點(diǎn)Q(0,y0)在線段AB的垂直平分線上,且=4,求直線l的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com