已知定點(diǎn)和定直線,動(dòng)點(diǎn)與定點(diǎn)的距離等于點(diǎn)到定直線的距離,記動(dòng)點(diǎn)的軌跡為曲線.
(1)求曲線的方程.
(2)若以為圓心的圓與曲線交于、不同兩點(diǎn),且線段是此圓的直徑時(shí),求直線的方程.

(1)曲線的方程.(2)直線AB的方程為 .  

解析試題分析:(1)已知條件符合拋物線的定義,直接可求出拋物線方程為;
(2)先設(shè)出,用點(diǎn)差法可求出直線AB的斜率,進(jìn)而可寫出直線方程.
試題解析:(1)由題意知,P到F的距離等于P到的距離,所以P的軌跡C是以F為焦點(diǎn),為準(zhǔn)線的拋物線,它的方程為                                5分
(2)設(shè),則  
由AB為圓M的直徑知,,故直線的斜率為;
直線AB的方程為,即 .                 12分
考點(diǎn):拋物線的定義、點(diǎn)差法.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓的離心率為,右焦點(diǎn)到直線的距離為
(1)求橢圓的方程;
(2)過(guò)橢圓右焦點(diǎn)F2斜率為)的直線與橢圓相交于兩點(diǎn),為橢圓的右頂點(diǎn),直線分別交直線于點(diǎn),線段的中點(diǎn)為,記直線的斜率為,求證:為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓的一個(gè)焦點(diǎn)與拋物線的焦點(diǎn)重合,且截拋物線的準(zhǔn)線所得弦長(zhǎng)為,傾斜角為的直線過(guò)點(diǎn).
(1)求該橢圓的方程;
(2)設(shè)橢圓的另一個(gè)焦點(diǎn)為,問(wèn)拋物線上是否存在一點(diǎn),使得關(guān)于直線對(duì)稱,若存在,求出點(diǎn)的坐標(biāo),若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知中心在坐標(biāo)原點(diǎn)O的橢圓C經(jīng)過(guò)點(diǎn)A(2,3),且點(diǎn)F(2,0)為其右焦點(diǎn).
(1)求橢圓C的方程;
(2)是否存在平行于OA的直線l,使得直線l與橢圓C有公共點(diǎn),且直線OAl的距離等于4?若存在,求出直線l的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知過(guò)點(diǎn)的直線交橢圓兩點(diǎn),是橢圓的一個(gè)頂點(diǎn),若線段的中點(diǎn)恰為點(diǎn).
(1)求直線的方程;
(2)求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在平面直角坐標(biāo)系xOy中,已知對(duì)于任意實(shí)數(shù)k,直線(k+1)x+(k)y-(3k)=0恒過(guò)定點(diǎn)F.設(shè)橢圓C的中心在原點(diǎn),一個(gè)焦點(diǎn)為F,且橢圓C上的點(diǎn)到F的最大距離為2+.
(1)求橢圓C的方程;
(2)設(shè)(m,n)是橢圓C上的任意一點(diǎn),圓Ox2y2r2(r>0)與橢圓C有4個(gè)相異公共點(diǎn),試分別判斷圓O與直線l1mxny=1和l2mxny=4的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知一條曲線軸右側(cè),上每一點(diǎn)到點(diǎn)的距離減去它到軸距離的差都是1.
(1)求曲線的方程;
(2)設(shè)直線交曲線兩點(diǎn),線段的中點(diǎn)為,求直線的一般式方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓=1上任一點(diǎn)P,由點(diǎn)Px軸作垂線PQ,垂足為Q,設(shè)點(diǎn)MPQ上,且=2,點(diǎn)M的軌跡為C.
(1)求曲線C的方程;
(2)過(guò)點(diǎn)D(0,-2)作直線l與曲線C交于A、B兩點(diǎn),設(shè)N是過(guò)點(diǎn)且平行于x軸的直線上一動(dòng)點(diǎn),且滿足 (O為原點(diǎn)),且四邊形OANB為矩形,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)橢圓C=1(a>b>0)的離心率e,右焦點(diǎn)到直線=1的距離d,O為坐標(biāo)原點(diǎn).
(1)求橢圓C的方程;
(2)過(guò)點(diǎn)O作兩條互相垂直的射線,與橢圓C分別交于AB兩點(diǎn),證明,點(diǎn)O到直線AB的距離為定值,并求弦AB長(zhǎng)度的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案