【題目】已知函數(shù)f (x)=x-(a+1)ln x-(a∈R),g (x)=x2+ex-xex.
(1)當(dāng)x∈[1,e] 時,求f (x)的最小值;
(2)當(dāng)a<1時,若存在x1∈[e,e2],使得對任意的x2∈[-2,0],f (x1)<g (x2)恒成立,求a的取值范圍.
【答案】(1)見解析;(2)
【解析】
(1)求出f(x)的定義域,求導(dǎo)數(shù)f′(x),得其極值點,按照極值點a在[1,e2]的左側(cè)、內(nèi)部、右側(cè)三種情況進(jìn)行討論,可得其最小值;
(2)存在x1∈[e,e2],使得對任意的x2∈[﹣2,0],f(x1)<g(x2)恒成立,即 f(x)min<g(x)min,由(1)知f(x)在[e,e2]上遞增,可得f(x)min,利用導(dǎo)數(shù)可判斷g(x)在[﹣2,0]上的單調(diào)性,可得g(x)min,由 f(x)min<g(x)min,可求得a的范圍;
(1)f(x)的定義域為(0,+∞),f′(x)(a∈R),
當(dāng)a≤1時,x∈[1,e2],f′(x)≥0,f(x)為增函數(shù),
所以f(x)min=f(1)=1﹣a;
當(dāng)1<a<e2時,x∈[1,a],f′(x)≤0,f(x)為減函數(shù),x∈[a,e2],f′(x)≥0,f(x)為增函數(shù),
所以f(x)min=f(a)=a﹣(a+1)lna﹣1;
當(dāng)a≥e2時,x∈[1,e2],f′(x)≤0,f(x)為減函數(shù),
所以f(x)min=f(e2)=e2﹣2(a+1);
綜上,當(dāng)a≤1時,f(x)min=1﹣a;
當(dāng)1<a<e2時,f(x)min=a﹣(a+1)lna﹣1;
當(dāng)a≥e2時,f(x)min=e2﹣2(a+1);
(2)存在x1∈[e,e2],使得對任意的x2∈[﹣2,0],f(x1)<g(x2)恒成立,即 f(x)min<g(x)min,
當(dāng)a<1時,由(1)可知,x∈[e,e2],f(x)為增函數(shù),
∴f(x1)min=f(e)=e﹣(a+1)
g′(x)=x+ex﹣xex﹣ex=x(1﹣ex),
當(dāng)x∈[﹣2,0]時g′(x)≤0,g(x)為減函數(shù),g(x)min=g(0)=1,
∴e﹣(a+1)1,a,
∴a∈(,1).
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題甲成立,可推出命題乙不成立,則下列說法中,一定正確的是( )
A.命題甲不成立,可推出命題乙成立B.命題甲不成立,可推出命題乙不成立
C.命題乙成立,可推出命題甲成立D.命題乙成立,可推出命題甲不成立
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列判斷正確的是( )
A. 設(shè)是實數(shù),則“”是“ ”的充分而不必要條件
B. :“,”則有:不存在,
C. 命題“若,則”的否命題為:“若,則”
D. “,”為真命題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)從某種型號的產(chǎn)品中抽取了件對該產(chǎn)品的某項指標(biāo)的數(shù)值進(jìn)行檢測,將其整理成如圖所示的頻率分布直方圖,已知數(shù)值在100~110的產(chǎn)品有2l件.
(1)求和的值;
(2)規(guī)定產(chǎn)品的級別如下表:
已知一件級產(chǎn)品的利潤分別為10,20,40元,以頻率估計概率,現(xiàn)質(zhì)檢部門從該批產(chǎn)品中隨機(jī)抽取兩件,兩件產(chǎn)品的利潤之和為,求的分布列和數(shù)學(xué)期望;
(3)為了了解該型號產(chǎn)品的銷售狀況,對該公司最近六個月內(nèi)的市場占有率進(jìn)行了統(tǒng)計,并繪制了相應(yīng)的折線圖,由折線圖可以看出,可用線性回歸模型擬合月度市場盧有率(%)與月份代碼之間的關(guān)系.求關(guān)于的線性回歸方程,并預(yù)測2017年4月份(即時)的市場占有率.
(參考公式:回歸直線方程為,其中,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,傾斜角為的直線經(jīng)過橢圓的右焦點且與圓相切.
(1)求橢圓 的方程;
(2)若直線與圓相切于點,且交橢圓于兩點,射線于橢圓交于點,設(shè)的面積于的面積分別為.
①求的最大值;
②當(dāng)取得最大值時,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)隨機(jī)選取了名男生,將他們的身高作為樣本進(jìn)行統(tǒng)計,得到如圖所示的頻率分布直方圖.觀察圖中數(shù)據(jù),完成下列問題.
(Ⅰ)求的值及樣本中男生身高在(單位: )的人數(shù);
(Ⅱ)假設(shè)同一組中的每個數(shù)據(jù)可用該組區(qū)間的中點值代替,通過樣本估計該校全體男生的平均身高;
(Ⅲ)在樣本中,從身高在和(單位: )內(nèi)的男生中任選兩人,求這兩人的身高都不低于的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)=0時,求實數(shù)的m值及曲線在點(1, )處的切線方程;
(2)討論函數(shù)的單調(diào)性.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com