【題目】已知集合,其中, , . 表示中所有不同值的個數(shù).
()設(shè)集合, ,分別求和.
()若集合,求證: .
()是否存在最小值?若存在,求出這個最小值;若不存在,請說明理由.
【答案】(1), ;(2)見解析;(3).
【解析】試題分析:(1)直接利用定義把集合P=2,4,6,8,Q=2,4,8,16中的值代入即可求出l(P)和l(Q);
(2)先由ai+aj(1≤i<j≤n)最多有個值,可得,;再利用定義推得所有ai+aj(1≤i<j≤n)的值兩兩不同,即可證明結(jié)論.
(Ⅲ)l(A)存在最小值,設(shè),所以.由此即可證明l(A)的最小值2n-3.
試題解析:
()由, , , , , 得,
由, , , , , 得.
()證明:∵最多有個值,
∴,
又集合,任取, ,
當(dāng)時,不妨設(shè),則,
即,
當(dāng), 時, ,
∴當(dāng)且僅當(dāng), 時, ,
即所有的值兩兩不同,
∴.
()存在最小值,且最小值為,
不妨設(shè),可得,
∴中至少有個不同的數(shù),即,
取,則,即的不同值共有個,
故的最小值為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左、右焦點分別為,,且,過點的直線與橢圓交于,兩點,的周長為8.
(Ⅰ)求橢圓的方程;
(Ⅱ)試問:是否存在定點,使得為定值?若存在,求;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)若在處取得極值,求的值;
(2)設(shè),試討論函數(shù)的單調(diào)性;
(3)當(dāng)時,若存在正實數(shù)滿足,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,橢圓,且點到橢圓C的兩焦點的距離之和為.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ) 若,是橢圓上的兩個點,線段的中垂線的斜率為,且直線與交于點,求證:點在直線上.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】手機完全充滿電量,在開機不使用的狀態(tài)下,電池靠自身消耗一直到出現(xiàn)低電量警告之間所能維持的時間稱為手機的待機時間.
為了解, 兩個不同型號手機的待機時間,現(xiàn)從某賣場庫存手機中隨機抽取, 兩個型號的手機各臺,在相同條件下進行測試,統(tǒng)計結(jié)果如下,
手機編號 | |||||||
型待機時間() | |||||||
型待機時間() |
其中, , 是正整數(shù),且.
()該賣場有臺型手機,試估計其中待機時間不少于小時的臺數(shù).
()從型號被測試的臺手機中隨機抽取臺,記待機時間大于小時的臺數(shù)為,求的分布列及其數(shù)學(xué)期望.
()設(shè), 兩個型號被測試手機待機時間的平均值相等,當(dāng)型號被測試手機待機時間的方差最小時,寫出, 的值(結(jié)論不要求證明).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,側(cè)面底面,底面是平行四邊形, , , , 為的中點,點在線段上.
(Ⅰ)求證: ;
(Ⅱ)試確定點的位置,使得直線與平面所成的角和直線與平面所成的角相等.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中a,.
當(dāng)時,若在處取得極小值,求a的值;
當(dāng)時.
若函數(shù)在區(qū)間上單調(diào)遞增,求b的取值范圍;
若存在實數(shù),使得,求b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}滿足:an+1-an=d(n∈N*),前n項和記為Sn,a1=4,S3=21.
(1)求數(shù)列{an}的通項公式;
(2)設(shè)數(shù)列{bn}滿足b1=,bn+1-bn=2an,求數(shù)列{bn}的通項公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知當(dāng)x∈[0,1]時,函數(shù)y=(mx-1)2的圖象與y=+m的圖象有且只有一個交點,求正實數(shù)m的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com