3.命題“?x∈R,x2>0”的否定是( 。
A.?x∈R,x2≤0B.$?{x_0}∈R,{x_0}^2>0$C.$?{x_0}∈R,{x_0}^2<0$D.$?{x_0}∈R,{x_0}^2≤0$

分析 利用全稱命題的否定是特稱命題,去判斷.

解答 解:因為命題是全稱命題,根據(jù)全稱命題的否定是特稱命題,
所以命題的否定:$?{x_0}∈R,{x_0}^2≤0$,
故選:D

點評 本題主要考查全稱命題的否定,要求掌握全稱命題的否定是特稱命題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.某種產(chǎn)品按質(zhì)量標(biāo)準(zhǔn)分成五個等級,等級編號依次為1,2,3,4,5.現(xiàn)從一批產(chǎn)品中隨機(jī)抽取20件,對其等級編號進(jìn)行統(tǒng)計分析,得到頻率分布表如下:
等級12345
頻率a0.20.45bc
(1)若所抽取的20件產(chǎn)品中,等級編號為4的恰有3件,等級編號為5的恰有2件,求a,b,c的值;
(2)在(1)的條件下,將等級編號為4的3件產(chǎn)品記為x1,x2,x3,等級編號為5的2件產(chǎn)品記為y1,y2,現(xiàn)從x1,x2,x3,y1,y2這5件產(chǎn)品中任取兩件(假定每件產(chǎn)品被取出的可能性相同),寫出所有可能的結(jié)果,并求這兩件產(chǎn)品的等級編號恰好相同的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.設(shè)拋物線C:y2=2x的焦點為F,點A在C上,若|AF|=$\frac{5}{2}$,以線段AF為直徑的圓經(jīng)過點B(0,m),則m=1或-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.函數(shù)f(x)=$\frac{{ln({x^2}-4x+4)}}{{{{(x-2)}^3}}}$的圖象可能是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知拋物線C:y2=2px(p>0)的焦點F與橢圓Γ:$\frac{x^2}{2}+{y^2}$=1的一個焦點重合,點M(x0,2)在拋物線上,過焦點F的直線l交拋物線于A,B兩點.
(Ⅰ)求拋物線C的方程以及|MF|的值;
(Ⅱ)記拋物線C的準(zhǔn)線與x軸交于點H,試問是否存在常數(shù)λ∈R,使得$\overrightarrow{AF}=λ\overrightarrow{FB}$且|HA|2+|HB|2=$\frac{85}{4}$都成立?若存在,求出實數(shù)λ的值; 若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知$\frac{1+sin2θ+cos2θ}{1+sin2θ-cos2θ}$=$\frac{3}{5}$,則tanθ=$\frac{5}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.在直角坐標(biāo)系xoy中,曲線C1的參數(shù)方程為$\left\{\begin{array}{l}x=1+cosβ\\ y=sinβ\end{array}$(β為參數(shù)).以坐標(biāo)原點為極點,x軸的正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρ=4cosθ.
(Ⅰ)將曲線C1的方程化為極坐標(biāo)方程;
(Ⅱ)已知直線l的參數(shù)方程為$\left\{\begin{array}{l}x=tcosα\\ y=tsinα\end{array}$($\frac{π}{2}$<α<π,t為參數(shù),t≠0),l與C1交與點A,l與C2交與點B,且|AB|=$\sqrt{3}$,求α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知函數(shù)f(x)=$\left\{\begin{array}{l}{lo{g}_{2}x(x>0)}\\{|x|(x≤0)}\end{array}\right.$,函數(shù)g(x)滿足以下三點條件:①定義域為R;②對任意x∈R,有g(shù)(x)=$\frac{1}{2}$g(x+2);③當(dāng)x∈[-1,1]時,g(x)=$\sqrt{1-{x^2}}$.則函數(shù)y=f(x)-g(x)在區(qū)間[-4,4]上零點的個數(shù)為( 。
A.7B.6C.5D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知函數(shù)f(x)的定義域是R,f(0)=2,對任意x∈R,f′(x)>f(x)+1,則下列正確的為( 。
A.(f(1)+1)•e>f(2)+1B.3e<f(2)+1
C.3•e≥f(1)+1D.3e2與f(2)+1大小不確定

查看答案和解析>>

同步練習(xí)冊答案