16.設(shè)△ABC的內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,且acosC+$\frac{1}{2}$c=b.
(Ⅰ)求角A的大。
(Ⅱ)若a=$\sqrt{21}$,b=5,求c的值.

分析 (Ⅰ)由正弦定理,三角形內(nèi)角和定理,化簡(jiǎn)已知可得cosA=$\frac{1}{2}$,結(jié)合范圍0<A<180°,即可得解A的值;
(Ⅱ)由已知及余弦定理即可得解c的值,要注意檢驗(yàn).

解答 (本題滿分為13分)
解:(Ⅰ)在△ABC中,由正弦定理及acosC+$\frac{1}{2}$c=b,可得:sinAcosC+$\frac{1}{2}$sinC=sinB,…(2分)
化簡(jiǎn)可得:sinAcosC+$\frac{1}{2}$sinC=sin(A+C)=sinAcosC+cosAsinC,…(4分)
解得:cosA=$\frac{1}{2}$,…(6分)
因?yàn)椋?<A<180°,
所以:A=60°…(7分)
(Ⅱ)由余弦定理可得:21=25+c2-5c,即c2-5c+4=0,…(10分)
解得:c=1或c=4,…(12分)
經(jīng)檢驗(yàn),符合條件,
所以c的值是1或4.…(13分)

點(diǎn)評(píng) 本題注意考查了正弦定理,三角形內(nèi)角和定理,余弦定理在解三角形中的應(yīng)用,考查了一元二次方程的解法,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.由幾塊大小相同的正方體搭成如圖所示的幾何體,它的側(cè)視圖是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.曲線x2=4y在點(diǎn)P(2,1)處的切線斜率k=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.若雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(0<a<b)的右支上存在一點(diǎn),它到右焦點(diǎn)及到直線x=-$\frac{a^2}{c},({{c^2}={a^2}+{b^2}})$的距離相等,則離心率e的取值范圍是( 。
A.$({1,\sqrt{2}})$B.$({1,\sqrt{2}+1}]$C.$({\sqrt{2},\sqrt{2}+1}]$D.$[{\sqrt{2}+1,+∞})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知集合A={x∈N|x≤4},B={x∈N|x>2},那么A∩B=( 。
A.{3,4}B.{0,1,2,3,4}C.ND.R

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知等差數(shù)列{an}的首項(xiàng)a1和公差d(d≠0)均為整數(shù),其前n項(xiàng)和為Sn
(Ⅰ)若a1=1,且a2,a4,a9成等比數(shù)列,求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若對(duì)任意n∈N*,且n≠6時(shí),都有Sn<S6,求a1的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知△ABC的內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,若B=$\frac{π}{3}$,b=4,則△ABC的面積的最大值為4$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.設(shè)變量x,y滿足約束條件$\left\{{\begin{array}{l}{x-y+1≥0}\\{x+y-1≥0}\\{3x-y-3≤0}\end{array}}$,則z=($\frac{1}{2}$)2x-y的最小值為$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.某工廠要安排生產(chǎn)Ⅰ,Ⅱ兩種產(chǎn)品,這些產(chǎn)品要在A,B,C,D四種不同的設(shè)備上加工,按工藝規(guī)定,在一天內(nèi),每件產(chǎn)品在各設(shè)備上需要加工的時(shí)間,及各設(shè)備限制最長(zhǎng)使用時(shí)間如下表:
設(shè)備產(chǎn)品Ⅰ每件需要加工時(shí)間產(chǎn)品Ⅱ每件需要加工時(shí)間設(shè)備最長(zhǎng)使用時(shí)間
A2小時(shí)2小時(shí)12小時(shí)
B1小時(shí)2小時(shí)8小時(shí)
C4小時(shí)0小時(shí)16小時(shí)
D0小時(shí)4小時(shí)12小時(shí)
設(shè)計(jì)劃每天生產(chǎn)產(chǎn)品Ⅰ的數(shù)量為x(件),產(chǎn)品Ⅱ的數(shù)量為y(件),
(Ⅰ)用x,y列出滿足設(shè)備限制使用要求的數(shù)學(xué)關(guān)系式,并畫出相應(yīng)的平面區(qū)域;
(Ⅱ)已知產(chǎn)品Ⅰ每件利潤(rùn)2(萬(wàn)元)產(chǎn)品Ⅱ每件利潤(rùn)3(萬(wàn)元),在滿足設(shè)備限制使用要求的情況下,問(wèn)該工廠在每天內(nèi)產(chǎn)品Ⅰ,產(chǎn)品Ⅱ各生產(chǎn)多少會(huì)使利潤(rùn)最大,并求出最大利潤(rùn).

查看答案和解析>>

同步練習(xí)冊(cè)答案