16.設集合A={x|(2x-1)(x-3)>0},B={x|x-1<0},則A∩B=( 。
A.(-∞,1)∪(3,+∞)B.(-∞,1)C.$({-∞,\frac{1}{2}})$D.$({\frac{1}{2},1})$

分析 分別求解不等式化簡集合A,B,再由交集運算得答案.

解答 解:A={x|(2x-1)(x-3)>0}={x|x<$\frac{1}{2}$或x>3},B={x|x-1<0}={x|x<1},
∵A∩B={x|x<$\frac{1}{2}$或x>3}∩{x|x<1}=(-∞,$\frac{1}{2}$),
故選:C.

點評 本題考查交集及其運算,考查了一元二次不等式的解法,是基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

6.設數(shù)列{an}的前n項和為Sn,且${S_n}=2-\frac{1}{{{2^{n-1}}}}$,數(shù)列{bn}為等差數(shù)列,且a1=b1-2,a2(b2-b1)=a1
(1)求數(shù)列{an}和{bn}的通項公式;
(2)設${c_n}=\frac{b_n}{a_n}$,求數(shù)列{cn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.已知全集U=R,集合$A=\left\{{x|y=\sqrt{1-x}}\right\}$,集合B={x|x2-2x<0},則A∩B等于( 。
A.[1,2)B.(1,2)C.[0,1]D.(0,1]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知函數(shù)f(x)=alnx-x2-bx(a,b∈R).
(1)若x=2是函數(shù)f(x)的一個極值點,x0和1是f(x)的兩個零點,且${x_0}∈({n,n+1})({n∈{N^*}})$,求n的值;
(2)若b=a-2,且x1,x2是f(x)的兩個極值點,求證:當|x1-x2|>1時,|f(x1)-f(x2)|>3-4ln2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.某種產品的質量以其質量指標值衡量,并依據(jù)質量指標值劃分等極如下表:
質量指標值mm<185185≤m<205m≥205
等級三等品二等品一等品
從某企業(yè)生產的這種產品中抽取200件,檢測后得到如下的頻率分布直方圖:

(Ⅰ)根據(jù)以上抽樣調查數(shù)據(jù),能否認為該企業(yè)生產的這種產品符合“一、二等品至少要占全部產品90%”的規(guī)定?
(Ⅱ)在樣本中,按產品等極用分層抽樣的方法抽取8件,再從這8件產品中隨機抽取4件,求抽取的4件產品中,一、二、三等品都有的概率;
(III)該企業(yè)為提高產品質量,開展了“質量提升月”活動,活動后再抽樣檢測,產品質量指標值X近似滿足X~N(218,140}),則“質量提升月”活動后的質量指標值的均值比活動前大約提升了多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.設等差數(shù)列{an}的公差不為0,已知a3=5,且a1、a2、a5成等比數(shù)列,則an=2n-1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.如圖,在△ABC中,D是BC的中點,E,F(xiàn) 是AD 上的兩個三等分點.$\overrightarrow{BE}•\overrightarrow{CE}=2$,BC=2,則$\overrightarrow{BF}•\overrightarrow{CF}$=$-\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.設函數(shù)$f(x)=\frac{1}{2}{x^2}-({a-1})x-alnx$.
(Ⅰ)討論函數(shù)f(x)的單調性;
(Ⅱ)若f(x)=b有兩個不相等的實數(shù)根x1,x2,求證$f'({\frac{{{x_1}+{x_2}}}{2}})>0$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.設點A(1,2),非零向量$\overrightarrow a=({m,n})$,若對于直線3x+y-4=0上任意一點P,$\overrightarrow{AP}•\overrightarrow a$恒為定值,則$\frac{m}{n}$=3.

查看答案和解析>>

同步練習冊答案