工商部門對甲、乙兩家食品加工企業(yè)的產(chǎn)品進(jìn)行深入檢查后,決定對甲企業(yè)的5種產(chǎn)品和乙企業(yè)的3種產(chǎn)品做進(jìn)一步的檢驗(yàn).檢驗(yàn)員從以上8種產(chǎn)品中每次抽取一種逐一不重復(fù)地進(jìn)行化驗(yàn)檢驗(yàn).
(1)求前3次檢驗(yàn)的產(chǎn)品中至少1種是乙企業(yè)的產(chǎn)品的概率;
(2)記檢驗(yàn)到第一種甲企業(yè)的產(chǎn)品時所檢驗(yàn)的產(chǎn)品種數(shù)共為X,求X的分布列和數(shù)學(xué)期望.

(1)
(2)

X
1
2
3
4
P




X的數(shù)學(xué)期望為:

解析試題分析:解:(Ⅰ),
∴ 前3次檢驗(yàn)的產(chǎn)品中至少1種是乙企業(yè)的產(chǎn)品的概率為.          4分
(Ⅱ) X可取值1,2,3,4
,  
,,           8分
X的分布列如下表:

X
1
2
3
4
P




X的數(shù)學(xué)期望為:
.                  12分
考點(diǎn):獨(dú)立事件的概率和分布列
點(diǎn)評:主要是考查了概率的運(yùn)用,利用概率的乘法公式以及分布列的性質(zhì)來求解,屬于基礎(chǔ)題。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

某校從高二年級學(xué)生中隨機(jī)抽取60名學(xué)生,將其會考的政治成績(均為整數(shù))分成六段: ,,…,后得到如下頻率分布直方圖.

(Ⅰ)求圖中的值
(Ⅱ)根據(jù)頻率分布直方圖,估計該校高二年級學(xué)生政治成績的平均分;
(Ⅲ)用分層抽樣的方法在80分以上(含 80分)的學(xué)生中抽取一個容量為6的樣本,將該樣本看成一個總體,從中任意選取2人,求其中恰有1人的分?jǐn)?shù)不低于90分的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)分別是先后拋擲一枚骰子得到的點(diǎn)數(shù),用隨機(jī)變量表示方程實(shí)根的個數(shù)(重根按一個計).
(1)求方程有實(shí)根的概率;
(2)求的分布列和數(shù)學(xué)期望;
(3)求在先后兩次出現(xiàn)的點(diǎn)數(shù)中有5的條件下,方程有實(shí)根的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某網(wǎng)站用“10分制”調(diào)查一社區(qū)人們的幸福度.現(xiàn)從調(diào)查人群中隨機(jī)抽取16名, 以下莖葉圖記錄了他們的幸福度分?jǐn)?shù)(以小數(shù)點(diǎn)前的一位數(shù)字為莖, 小數(shù)點(diǎn)后的一位數(shù)字為葉):

(1) 指出這組數(shù)據(jù)的眾數(shù)和中位數(shù);
(2) 若幸福度不低于9.5分, 則稱該人的幸福度為“極幸!.求從這16人中隨機(jī)選取3人, 至多有1人是“極幸!钡母怕;
(3) 以這16人的樣本數(shù)據(jù)來估計整個社區(qū)的總體數(shù)據(jù), 若從該社區(qū)(人數(shù)很多)任選3人, 記表示抽到“極幸福”的人數(shù), 求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某工廠生產(chǎn)兩種元件,其質(zhì)量按測試指標(biāo)劃分為:大于或等于7.5為正品,小于7.5為次品.現(xiàn)從一批產(chǎn)品中隨機(jī)抽取這兩種元件各5件進(jìn)行檢測,檢測結(jié)果記錄如下:


7
7
7.5
9
9.5

6

8.5
8.5

由于表格被污損,數(shù)據(jù)看不清,統(tǒng)計員只記得,且兩種元件的檢測數(shù)據(jù)的平均值相等,方差也相等.
(Ⅰ)求表格中的值;
(Ⅱ)若從被檢測的5件種元件中任取2件,求2件都為正品的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在某校高三學(xué)生的數(shù)學(xué)校本課程選課過程中,規(guī)定每位同學(xué)只能選一個科目。已知某班第一小組與第二小組各 有六位同學(xué)選擇科目甲或科 目乙,情況如下表:

 
科目甲
科目乙
總計
第一小組
1
5
6
第二小組
2
4
6
總計
3
9
12
現(xiàn)從第一小組、第二小 組中各任選2人分析選課情況.
(1)求選出的4 人均選科目乙的概率;
(2)設(shè)為選出的4個人中選科目甲的人數(shù),求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題


現(xiàn)有長分別為、、的鋼管各根(每根鋼管質(zhì)地均勻、粗細(xì)相同且附有不同的編號),從中隨機(jī)抽取根(假設(shè)各鋼管被抽取的可能性是均等的,),再將抽取的鋼管相接焊成筆直的一根.
(1)當(dāng)時,記事件{抽取的根鋼管中恰有根長度相等},求;
(2)當(dāng)時,若用表示新焊成的鋼管的長度(焊接誤差不計),①求的分布列;
②令,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

一家化妝品公司于今年三八節(jié)期間在某社區(qū)舉行了為期三天的“健康使用化妝品知識講座”.每位社區(qū)居民可以在這三天中的任意一天參加任何一個討論,也可以放棄任何一個講座(規(guī)定:各個講座達(dá)到預(yù)先設(shè)定的人數(shù)時稱為滿座).統(tǒng)計數(shù)據(jù)表明,各個講座各天滿座的概率如下表:

 
洗發(fā)水講座
洗面奶講座
護(hù)膚霜講座
活顏營養(yǎng)講座
面膜使用講座
3月8日





3月9日





3月10日





(1)求面膜使用講座三天都不滿座的概率;
(2)設(shè)3月9日各個講座滿座的數(shù)目為,求隨機(jī)變量的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題13分)已知關(guān)于x的一元二次函數(shù),分別從集合PQ中隨機(jī)取一個數(shù)ab得到數(shù)列。
(1)若,列舉出所有的數(shù)對,并求函數(shù)有零點(diǎn)的概率;
(2)若,,求函數(shù)在區(qū)間上是增函數(shù)的概率。

查看答案和解析>>

同步練習(xí)冊答案