【題目】如圖是正四面體的平面展開圖,G,H,M,N分別為DE,BE,EF,EC的中點(diǎn),在這個(gè)正四面體中,
①GH與EF平行;②BD與MN為異面直線;③GH與MN成60°角;④DE與MN垂直.以上四個(gè)命題中,正確命題的序號(hào)是

【答案】②③④
【解析】解:將正四面體的平面展開圖復(fù)原為正四面體A(B、C)﹣DEF,如圖:

對(duì)于①,G、H分別為DE、BE的中點(diǎn),則GH∥AD,而AD與EF異面,故GH與EF不平行,故①錯(cuò)誤;
對(duì)于②,BD與MN為異面直線,正確(假設(shè)BD與MN共面,則A、D、E、F四點(diǎn)共面,與ADEF為正四面體矛盾,故假設(shè)不成立,故BD與MN異面);
對(duì)于③,依題意,GH∥AD,MN∥AF,∠DAF=60°,故GH與MN成60°角,故③正確;
對(duì)于④,連接GF,A點(diǎn)在平面DEF的射影A1在GF上,∴DE⊥平面AGF,DE⊥AF,
而AF∥MN,∴DE與MN垂直,故④正確.
綜上所述,正確命題的序號(hào)是②③④,
故答案為:②③④.
正四面體的平面展開圖復(fù)原為正四面體A(B、C)﹣DEF,①,依題意,GH∥AD,而AD與EF異面,從而可判斷GH與EF不平行;②,假設(shè)BD與MN共面,可得A、D、E、F四點(diǎn)共面,導(dǎo)出矛盾,從而可否定假設(shè),肯定BD與MN為異面直線;③,依題意知,GH∥AD,MN∥AF,∠DAF=60°,于是可判斷GH與MN成60°角;④,連接GF,那么A點(diǎn)在平面DEF的射影肯定在GF上,通過線面垂直得到線線垂直.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若將函數(shù) 的圖象向左平移 個(gè)單位長(zhǎng)度,則平移后圖象的對(duì)稱軸方程為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)是一個(gè)非空集合, 是定義在上的一個(gè)運(yùn)算.如果同時(shí)滿足下述四個(gè)條件:

(1)對(duì)于,都有;

(2)對(duì)于,都有;

(3)對(duì)于,使得;

(4)對(duì)于,使得(注:“”同(iii)中的“”).

則稱關(guān)于運(yùn)算構(gòu)成一個(gè)群.現(xiàn)給出下列集合和運(yùn)算:

是整數(shù)集合, 為加法;②是奇數(shù)集合, 為乘法;③是平面向量集合, 為數(shù)量積運(yùn)算;④是非零復(fù)數(shù)集合, 為乘法. 其中關(guān)于運(yùn)算構(gòu)成群的序號(hào)是___________(將你認(rèn)為正確的序號(hào)都寫上).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) ).

(1)若的圖象在點(diǎn)處的切線方程為,求在區(qū)間上的最大值和最小值;

(2)若在區(qū)間上不是單調(diào)函數(shù),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知在△ABC中,角A,B,C的對(duì)邊分別是ab,c,向量m=(2b,1),n=(2ac,cos C),且mn.(1)若b2ac,試判斷△ABC的形狀;(2)求y=1-的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列各函數(shù)在其定義域中,既是奇函數(shù),又是增函數(shù)的是(
A.y=x+1
B.y=﹣x3
C.y=﹣
D.y=x|x|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等差數(shù)列的前n項(xiàng)和為, , ,數(shù)列滿足: , , ,數(shù)列的前n項(xiàng)和為

(1)求數(shù)列的通項(xiàng)公式及前n項(xiàng)和;

(2)求數(shù)列的通項(xiàng)公式及前n項(xiàng)和;

(3)記集合,若M的子集個(gè)數(shù)為16,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)y=lg(3﹣4x+x2)的定義域?yàn)镸,當(dāng)x∈M時(shí),則f(x)=2x+2﹣3×4x的最大值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知實(shí)數(shù)a>0, 方程 有且僅有兩個(gè)不等實(shí)根,且較大的實(shí)根大于3,則實(shí)數(shù)a的取值范圍

查看答案和解析>>

同步練習(xí)冊(cè)答案