【題目】設(shè)是一個(gè)非空集合, 是定義在上的一個(gè)運(yùn)算.如果同時(shí)滿足下述四個(gè)條件:

(1)對(duì)于,都有;

(2)對(duì)于,都有;

(3)對(duì)于,使得;

(4)對(duì)于,使得(注:“”同(iii)中的“”).

則稱關(guān)于運(yùn)算構(gòu)成一個(gè)群.現(xiàn)給出下列集合和運(yùn)算:

是整數(shù)集合, 為加法;②是奇數(shù)集合, 為乘法;③是平面向量集合, 為數(shù)量積運(yùn)算;④是非零復(fù)數(shù)集合, 為乘法. 其中關(guān)于運(yùn)算構(gòu)成群的序號(hào)是___________(將你認(rèn)為正確的序號(hào)都寫上).

【答案】①④

【解析】是整數(shù)集合,則兩個(gè)整數(shù)相加仍為整數(shù), 整數(shù)加法滿足結(jié)合律;

,則 在整數(shù)集合中存在唯一一個(gè),使,故整數(shù)集合關(guān)于運(yùn)算*構(gòu)成一個(gè)群;

是奇數(shù)集合, 為乘法,則,不滿足;

是平面向量集合, 為數(shù)量積運(yùn)算,則不滿足;

是非零復(fù)數(shù)集合, 為乘法,則兩個(gè)非零復(fù)數(shù)相乘仍為非零復(fù)數(shù); 非零復(fù)數(shù)相乘符合結(jié)合律; ,則) 中存在唯一一個(gè),使

故答案為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= (x2﹣2ax+3).
(1)若f(x)的定義域?yàn)镽,求a的取值范圍;
(2)若f(﹣1)=﹣3,求f(x)單調(diào)區(qū)間;
(3)是否存在實(shí)數(shù)a,使f(x)在(﹣∞,2)上為增函數(shù)?若存在,求出a的范圍?若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知, 的導(dǎo)函數(shù).

Ⅰ)求的極值;

Ⅱ)若時(shí)恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線C:y2=2px(p>0),上的點(diǎn)M(1,m)到其焦點(diǎn)F的距離為2,
(1)求C的方程;并求其準(zhǔn)線方程;
(2)已知A (1,﹣2),是否存在平行于OA(O為坐標(biāo)原點(diǎn))的直線L,使得直線L與拋物線C有公共點(diǎn),且直線OA與L的距離等于 ?若存在,求直線L的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖給出的是計(jì)算 的值的一個(gè)程序框圖,判斷其中框內(nèi)應(yīng)填入的條件是(

A.i>10
B.i<10
C.i>20
D.i<20

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓和直線 ,橢圓的離心率,坐標(biāo)原點(diǎn)到直線的距離為.

(Ⅰ)求橢圓的方程;

(Ⅱ)已知定點(diǎn),若直線過點(diǎn)且與橢圓相交于兩點(diǎn),試判斷是否存在直線,使以為直徑的圓過點(diǎn)?若存在,求出直線的方程;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=|2x+1|﹣|x﹣4|.
(1)解不等式f(x)>0;
(2)若f(x)+3|x﹣4|>m對(duì)一切實(shí)數(shù)x均成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖是正四面體的平面展開圖,G,H,M,N分別為DE,BE,EF,EC的中點(diǎn),在這個(gè)正四面體中,
①GH與EF平行;②BD與MN為異面直線;③GH與MN成60°角;④DE與MN垂直.以上四個(gè)命題中,正確命題的序號(hào)是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù), .

(1) 關(guān)于的方程在區(qū)間上有解,求的取值范圍;

(2) 當(dāng)時(shí), 恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案