9.函數(shù)f(x)=sin(2x+$\frac{π}{3}$)( 。
A.圖象向右平移$\frac{π}{3}$個(gè)單位長(zhǎng)度得到y(tǒng)=sin2x圖象
B.圖象關(guān)于點(diǎn)($\frac{π}{6}$,0)對(duì)稱
C.圖象關(guān)于直線x=-$\frac{π}{12}$對(duì)稱
D.在區(qū)間[-$\frac{5π}{12}$,$\frac{π}{12}$]單調(diào)遞增

分析 利用函數(shù)y=Asin(ωx+φ)的圖象變換,正弦函數(shù)的性質(zhì)逐一分析各個(gè)選項(xiàng)即可得解.

解答 解:對(duì)于A,圖象向右平移$\frac{π}{3}$個(gè)單位長(zhǎng)度得到y(tǒng)=sin[2(x-$\frac{π}{3}$)+$\frac{π}{3}$]=sin(2x-$\frac{π}{3}$)的圖象,故錯(cuò)誤;
對(duì)于B,由于sin(2×$\frac{π}{6}$+$\frac{π}{3}$)=$\frac{\sqrt{3}}{2}$,故錯(cuò)誤;
對(duì)于C,由于sin[2×(-$\frac{π}{12}$)+$\frac{π}{3}$]=sin$\frac{π}{6}$=$\frac{1}{2}$≠±1,故錯(cuò)誤;
對(duì)于D,令2kπ-$\frac{π}{2}$≤2x+$\frac{π}{3}$≤2kπ+$\frac{π}{2}$,k∈Z,解得:kπ-$\frac{5π}{12}$≤x≤kπ+$\frac{π}{12}$,k∈Z,
故當(dāng)k=0時(shí),f(x)在區(qū)間[-$\frac{5π}{12}$,$\frac{π}{12}$]單調(diào)遞增.
故選:D.

點(diǎn)評(píng) 本題主要考查了函數(shù)y=Asin(ωx+φ)的圖象變換,正弦函數(shù)的圖象和性質(zhì),考查了轉(zhuǎn)化思想和數(shù)形結(jié)合思想的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知定義在R上的偶函數(shù)f(x)在[0,+∞)上遞減,且f(1)=0,則不等式f(log4x)+f(log$\frac{1}{4}$x)≥0的解集為[$\frac{1}{4}$,4].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.設(shè)p:x<2,q:-2<x<2,則p是q成立的( 。
A.充分非必要條件B.必要非充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.如圖,梯形A1B1C1D1是一平面圖形ABCD的直觀圖(斜二測(cè)),若AD∥Oy,AB∥CD,A1B1=$\frac{3}{4}{C_1}{D_1}=3,{A_1}{D_1}$=1,則原平面圖形ABCD的面積是( 。
A.14.B.7C.$14\sqrt{2}$D.$7\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.在正三棱錐P-ABC中,點(diǎn)P,A,B,C都在球O的球面上,PA,PB,PC兩兩互相垂直,且球心O到底面ABC的距離為$\frac{\sqrt{3}}{3}$,則球O的表面積為12π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.某中學(xué)有學(xué)生270人,其中一年級(jí)108人,二、三年級(jí)各81人,現(xiàn)要用抽樣方法抽取10人組成一個(gè)樣本.將學(xué)生按一、二、三年級(jí)依次同一編號(hào)為1,2,…,270.如果抽得號(hào)碼有如下四種情況:
①5,9,100,107,111,121,180,195,200,265;
②7,34,61,88,115,142,169,196,223,250;
③30,57,84,111,138,165,192,219,246,270;
④11,38,60,90,119,146,173,200,227,254.
則其中可能由分層抽樣、而不可能由系統(tǒng)抽樣得到的樣本是(  )
A.①②B.①④C.②③D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.直角坐標(biāo)系xOy中,已知點(diǎn)A(1,0),函數(shù)f(x)=sin(2x-$\frac{π}{6}$)的圖象在y軸右側(cè)的第一個(gè)最高點(diǎn)為B,則$\overrightarrow{OA}$•$\overrightarrow{OB}$=$\frac{π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)過點(diǎn)M(2,1),且離心率為$\frac{\sqrt{3}}{2}$.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若過原點(diǎn)的直線l1與橢圓C交于P,Q兩點(diǎn),且在直線l2:x-y+2$\sqrt{6}$=0上存在點(diǎn)M,使得△MPQ為等邊三角形,求直線l1的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.設(shè)曲線y=x2-x在點(diǎn)(3,6)處的切線與直線ax+y+1=0垂直,則a=$\frac{1}{5}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案